改善Al-Mg合金流动性及力学性能的新方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Novel Method for Improving the Fluidity and Mechanical Properties of Al-Mg Alloy
  • 作者:田帅 ; 刘桂亮 ; 韩梦霞 ; 刘相法
  • 英文作者:TIAN Shuai;LIU Gui-liang;HAN Meng-xia;LIU Xiang-fa;Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials, Ministry of Education,Shandong University;Shandong Al & Mg Melt Tech.Co., Ltd.;
  • 关键词:Al-Ti-C-B晶种合金 ; Al-Mg合金 ; 晶粒细化 ; 流动性 ; 力学性能
  • 英文关键词:Al-Ti-C-B crystal-seed alloy;;Al-Mg alloy;;grain refinement;;fluidity;;mechanical properties
  • 中文刊名:JMCX
  • 英文刊名:Journal of Netshape Forming Engineering
  • 机构:山东大学材料液固结构演变与加工教育部重点实验室;山东吕美熔体技术有限公司;
  • 出版日期:2019-01-10
  • 出版单位:精密成形工程
  • 年:2019
  • 期:v.11;No.58
  • 基金:国家自然科学基金重点项目(51731007)
  • 语种:中文;
  • 页:JMCX201901008
  • 页数:6
  • CN:01
  • ISSN:50-1199/TB
  • 分类号:47-52
摘要
目的改善Al-Mg合金的流动性和组织性能。方法向Al-Mg合金中加入含有掺杂型Ti Cx的Al-Ti-C-B晶种合金(简称Al-Ti-C-B),借助其对Al-Mg合金枝晶大小及形貌调控,研究其对Al-Mg合金流动性和组织性能的影响,并与传统的Al-Ti-B中间合金细化剂进行对比。结果加入Al-Ti-C-B后Al-Mg合金的流动性和力学性能均高于Al-Ti-B,螺旋流动性试样长度由692 mm提高到937 mm,提高了约35.4%;Al-Mg合金的拉伸强度分别由192 MPa提高至216 MPa,伸长率由2.1%提高至4.1%,分别提高了12.5%和95.2%。结论借助Al-Ti-C-B及其晶种技术能够实现对Al-Mg合金流动性和力学性能的同步提升。
        The paper aims to improve fluidity and mechanical properties of Al-Mg alloy. Al-Ti-C-B crystal-seed alloy(named Al-Ti-C-B) containing doping type TiCx was added to Al-Mg alloy to research its influences on fluidity and mechanical properties of Al-Mg alloy. Compared with the conventional Al-Ti-B intermediate alloy refiner, the fluidity and mechanical properties of Al-Mg alloy were higher than those of Al-Ti-B, with the average length of the spiral fluidity sample increased from 692 mm to 937 mm, which increased by 35.4%. The tensile strength increased from 192 MPa to 216 MPa and the elongation increased from 2.1% to 4.1%, which increased by 12.5% and 95.2% individually. Al-Ti-C-B and its crystal-seed technology could improve fluidity and mechanical properties of Al-Mg alloy simultaneously.
引文
[1]LUMLEY R N,POLMEAR I J,MORTON A J,et al.Recent Developments in Advanced Aircraft Aluminum Alloys[J].Materials&Design,2014,56(4):862-871.
    [2]CEPEDA-JIMéNEZ C M,GARCíA-INFANTA J M,POZUELO M,et al.Impact Toughness Improvement of High-strength Aluminium Alloy by Intrinsic and Extrinsic Fracture Mechanisms via Hot Roll Bonding[J].Scripta Materialia,2009,61(4):407-410.
    [3]JAYAGANTHANR,BROKMEIER H G,SCHWEBKE B,et al.Microstructure and Texture Evolution in Cryorolled Al 7075 Alloy[J].Journal of Alloys and Compounds,2010,496(1/2):183-188.
    [4]LIU Y,LIU M,CHEN X,et al.Effect of Mg on Microstructure and Mechanical Properties of Al-Mg Alloys Produced by High Pressure Torsion[J].Scripta Materialia,2019,159:137-141.
    [5]刘伯操,郎业方,杨长贺.铸造手册[J].北京:机械工业出版社,2001.LIU Bo-cao,LANG Ye-fang,YANG Chang-he.Foundry Handbook[M].Beijing:Mechanical Industry Press,2001.
    [6]起华荣,史庆南,王效琪,等.Al-5Ti-1B对A356合金流动性的影响[J].铸造,2009,58(5):489-493.QI Hua-rong,SHI Qing-nan,WANG Xiao-qi,et al.The Effect of Al5Ti1B on A356 Fluidity[J].China Foundry,2009,58(5):489-493.
    [7]余爱武,杨成刚,陈和,等.Ti、Sc对Al-Mg-Zr合金组织和力学性能的影响[J].特种铸造及有色合金,2014,34(9):980-982.YU Ai-wu,YANG Cheng-gang,CHEN He,et al.Effect of Ti,Sc Grain Refiner on Microstructure and Mechanical Properties of the Al-Mg-Zr Alloy[J].Special Casting&Nonferrous Alloys,2014,34(9):980-982.
    [8]郑红梅,胡学飞,崔接武,等.添加Sc元素后Al-Mg合金的性能和结构变化[J].材料热处理学报,2016,37(11):45-49.ZHENG Hong-mei,HU Xue-fei,CUI Jie-wu,et al.Performance and Structure of Al-Mg Alloys Doped with Sc[J].Transactions of Materials and Heat Treatment,2016,37(11):45-49.
    [9]LI X,CHEN J,LIU C,et al.Effects of T6 and T78 Tempers on the Microstructures and Properties of Al-Mg-Si-Cu Alloys[J].Acta Metallurgica Sinica,2013,49(2):243-250.
    [10]CHEN J H,COSTAN E,HUIS M A V,et al.Atomic Pillar-Based Nanoprecipitates Strengthen AlMgSi Alloys[J].Science,2006,312(5772):416-419.
    [11]CHAKRABARTI D J,LAUGHLIN.Phase Relations and Precipitation in Al-Mg-Si Alloys with Cu Additions[J].Progress in Materials Science,2004,49(3):389-410.
    [12]LIU Y,LIU M,CHEN X,et al.Effect of Mg on Microstructure and Mechanical Properties of Al-Mg Alloys Produced by High Pressure Torsion[J].Scripta Materialia,2019,159:137-141.
    [13]李炯利,张坤,熊艳才.高性能纳米晶Al-Mg合金的研究进展[J].材料工程,2013,41(11):75-80.LI Jiong-li,ZHANG Kun,XIONG Yan-cai.Advances in Research on Nanocrystalline Al-Mg Alloys with High Performance[J].Journal of Materials Engineering,2013,41(11):75-80.
    [14]姜奎,张藤贤,王子博,等.高压扭转Al-Mg铝合金的纳米压痕研究[J].热加工工艺,2018,47(10):30-38.JIANG Kui,ZHANG Teng-xian,WANG Zi-bo,et al.Nanoindentation Research of Al-Mg Aluminum Alloys Processed by High Pressure Torsion[J].Hot Working Technology,2018,47(10):30-38.
    [15]王恩兆.形核剂对铝合金晶粒细化极限行为的研究[D].济南:山东大学,2015.WANG En-zhao.The Grain Refinement Limit of Aluminum Alloy Inoculated by Grain Refiner[D].Jinan:Shandong University,2015.
    [16]王淑俊.含Zr铝合金的细化“中毒”现象及其细化新工艺研究[D].济南:山东大学,2009.WANG Shu-jun.Study on the“Poisoning”Phenomena and the New Refining Technique for Zr-bearing Aluminum Alloys[D].Jinan:Shandong University,2009.
    [17]聂金凤,刘相法,丁海民,等.Al-Ti-C-B中间合金晶粒细化行为的研究[J].特种铸造及有色合金,2008,28(S1):175-177.NIE Jin-feng,LIU Xiang-fa,DING Hai-min,et al.The Grain Refining Performance Research of Al-Ti-C-B Master Alloy[J].Special-cast and Non-ferrous Alloys,2008,28(S1):175-177.
    [18]王涛.Ti C在Al-Ti-Al4C3熔体中反应合成及其对铝合金的强韧化[D].济南:山东大学,2013.WANG Tao.The Synthesis of TiC in Al-Ti-Al4C3 Melts and Its Strengthening-Toughening for Aluminium Alloy[D].Jinan:Shandong University,2013.
    [19]KLIAUGA A M,FERRANTE M.Liquid Formation and Microstructural Evolution during Re-heating and Partial Melting of an Extruded A356 Aluminium Alloy[J].Acta Materialia,2005,53(2):345-356.
    [20]WANG Z Q,WU H,YANG Z X,et al.Preparation of Al-Ti-C-B Master Alloy and Its Grain Refinement Effect for Pure Al[J].Advanced Materials Research,2012,452/453(4):778-781.
    [21]NIE J F,MA X,DING H M,et al.Microstructure and Grain Refining Performance of a New Al-Ti-C-B Master Alloy[J].Journal of Alloys and Compounds,2009,486(1/2):185-190.
    [22]张国君.抗Zr“中毒”Al-Ti-B-C中间合金及其对7050合金细化新工艺研究[D].济南:山东大学,2017.ZHANG Guo-jun.Study on Anti-poisoning Al-Ti-B-CMaster Alloy and the Novel Refining Technique for 7050Alloy[D].Jinan:Shandong University,2017.
    [23]KWON Y D,LEE Z H.The Effect of Grain Refining and Oxide Inclusion on the Fluidity of Al-4.5Cu-0.6Mn and A356 Alloys[J].Materials Science&Engineering A(Structural Materials:Properties,Microstructure and Processing),2003,360(1/2):372-376.
    [24]起华荣,杨钢,史庆南,等.A356合金流动性测试研究[J].轻金属,2008(1):52-54.QI Hua-rong,YANG Gang,SHI Qing-nan,et al.Study on Fluidity of A356 Aluminum Alloy[J].Light Metals,2008(1):52-54.
    [25]弭光宝,王晶,何良菊,等.电磁搅拌对Al-Si合金流动性及凝固组织的影响[J].铸造,2010,59(1):16-21.MI Guang-bao,WANG Jing,HE Liang-ju,et al.Influence of Electromagnetic Stirring on Fluidity and Solidification Structure of Al-Si Alloy[J].China Foundry,2010,59(1):16-21.
    [26]李言祥.材料加工原理[M].北京:清华大学出版社,2005.LI Yan-xiang.Material Processing Principle[M].Beijing:Tsinghua University Press,2005.
    [27]YANG H,GAO T,WANG H,et al.Influence of C/Ti Stoichiometry in Ti Cx on the Grain Refinement Efficiency of Al-Ti-C Master Alloy[J].Journal of Materials Science&Technology,2017,33(7):616-622.
    [28]杨化冰,王海超,刘桂亮,等.N掺杂型Al-4Ti-1C对A356合金细化及力学性能的影响[J].精密成形工程,2017,9(5):39-43.YANG Hua-bing,WANG Hai-chao,LIU Gui-liang,et al.Refining and Strengthening Performance of N-doped Al-4Ti-1C Refiner on A356 Alloy[J].Journal of Netshape Forming Engineering,2017,9(5):39-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700