Fe含量对Ti5553合金α相析出响应与硬化行为的影响(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Precipitation response and hardening behaviors of Fe-modified Ti5553 alloy
  • 作者:朱文光 ; 李沛 ; 孙逊 ; 陈威 ; 张华磊 ; 孙巧艳 ; 刘彬 ; 肖林 ; 孙军
  • 英文作者:Wen-guang ZHU;Pei LI;Xun SUN;Wei CHEN;Hua-lei ZHANG;Qiao-yan SUN;Bin LIU;Lin XIAO;Jun SUN;State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University;Frontier Institute of Science and Technology, Xi'an Jiaotong University;State Key Laboratory of Powder Metallurgy, Central South University;
  • 关键词:Fe改性Ti5553合金 ; α相析出长大 ; 硬化行为 ; Pandat计算
  • 英文关键词:Fe-modified Ti5553 alloy;;α-phase evolution;;hardening behavior;;Pandat calculation
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:西安交通大学金属材料强度国家重点实验室;西安交通大学前沿科学与技术研究院;中南大学粉末冶金国家重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:Projects(51671158,51871176,51621063)supported by the National Natural Science Foundation of China;; Project(2014CB644003)supported by the National Basic Research Program of China;; Project(PB2018008)supported by the 111 Project 2.0,China;; Project(2018JM5098)supported by the Natural Science Basic Research Plan in Shaanxi Province of China
  • 语种:英文;
  • 页:ZYSY201906012
  • 页数:10
  • CN:06
  • ISSN:43-1239/TG
  • 分类号:131-140
摘要
利用混合元素烧结法制备含0、0.4、1.2和2.0wt.%Fe的Ti5553合金。研究Fe元素对绝热ω目变、α相析出长大以及时效硬化行为的影响规律。结果表明,2wt.%Fe元素的加入可提高β相的稳定性,抑制绝热ω相析出。随着Fe含量增加,α相析出孕育期变长,尺寸变小。α相沿晶析出倾向增强,尤其是在炉冷时,Ti5553-2Fe合金形成明显的魏氏组织。随后,利用Pandat软件并结合经典动力学理论分析Fe含量对Ti5553合金α相析出长大行为的影响机制。硬度曲线表明,不同Fe含量合金的硬度均随时效时间延长先增加,6h达到峰值后缓慢降低。Ti5553-2Fe合金具有最高的峰值硬度,这是Fe等合金元素点阵错配引起的固溶强化与细小α相析出引起的时效强化共同作用的结果。
        Ti5553-xFe(x=0.4, 1.2.,2.0, wt.%) alloys have been designed and fabricated through BE(blended element) sintering to investigate the effect of Fe-addition on athermal ω-phase transformation, a-phase evolution and age hardening behavior. The results show that the formation of athermal ω-phase is fully suppressed in water-quenched specimens when Fe-addition is up to 2 wt.%. The relevant timescales of a formation during initial stages of aging indicate that incubation time increases with Fe-addition. Further aging results in continuous nucleation and growth of a-phase but finer intragranular a lamellae exhibit in Ti5553-2 Fe alloy. In addition, the width and extent of grain boundary a-film increase slightly with incremental Fe-addition, especially in furnace cooling condition. Result of Vickers hardness manifests that Fe-addition leads to a strong hardening effect in both solution and aging treatment. The solid solution strengthening is quantitatively estimated by ab initio calculation based on the Labusch-Nabarro model.The evolution of a-precipitate is rationalized by Gibbs free energy. The prominent hardening effect of Ti5553-2 Fe alloy is attributed to both large lattice misfit of β-matrix and fine a-precipitate distribution.
引文
[1]BANIA P J.Beta titanium alloys and their role in the titanium industry[J].JOM,1994,46:16-19.
    [2]TERLIND G T,DUERIG T W,WILLIAMS J C.Microstructure,tensile deformation,and fracture in aged Ti-10V-2Fe-3Al[J].Metallurgical Transactions A,1983,14:2101-2115.
    [3]FAN J K,LI J S,KOU H C,HUA K,TANG B,ZHANG Y.Microstructure and mechanical property correlation and property optimization of a nearβtitanium alloy Ti-7333[J].Journal of Alloys and Compounds,2016,682:517-524.
    [4]BANERJEE D,WILLIAMS J C.Perspectives on titanium science and technology[J].Acta Materialia,2013,61:844-879.
    [5]NYAKANA S L,FANNING J C,BOYER R R.Quick reference guide forβtitanium alloys in the 00s[J].Journal of Materials Engineering and Performance,2005,14:799-811.
    [6]XIN X U,DONG L M,ZHANG Z Q,YANG R.Hot deformation behavior and microstructural evolution of beta C titanium alloy inβphase field[J].Transactions of Nonferrous Metals Society of China,2016,26:2874-2882.
    [7]LI Hui-min,LI Miao-quan,LUO J,WANG K.Microstructure and mechanical properties of heat-treated Ti-5Al-2Sn-2Zr-4Mo-4Cr[J].Transactions of Nonferrous Metals Society of China,2015,25:2893-2900.
    [8]IVASISHIN O M,MARKOVSKY P E,MATVIYCHUK Y V,FOX S.A comparative study of the mechanical properties of high-strengthβ-titanium alloys[J].Journal of Alloys and Compounds,2008,457:296-309.
    [9]ANKEM S,MARGOLIN H,GREENE C A,OBERSON P G.Mechanical properties of alloys consisting of two ductile phases[J].Progress in Materials Science,2006,51:632-709.
    [10]KANOU O,FUKADA N,HAYAKAWA M.The effect of Fe addition on the mechanical properties of Ti-6Al-4V alloys produced by the prealloyed powder method[J].Materials Transactions,2016,57:681-685.
    [11]DEVARAJ A,JOSHI V V,SRIVASTAVA A,MANANDHAR S,MOXSON V,LAVENDER C.A low-cost hierarchical nanostructured beta-titanium alloy with high strength[J].Nature Communications,2016,7:11176.
    [12]BOLZONI L,RUIZ-NAVAS E M,GORDO E.Understanding the properties of low-cost iron-containing powder metallurgy titanium alloys[J].Materials and Design,2016,110:317-323.
    [13]da COSTA F H,SALVADOR C A F,de MELLO M G,CARAM R.Alpha phase precipitation in Ti-30Nb-1Fe alloys-phase transformations in continuous heating and aging heat treatments[J].Materials Science and Engineering A,2016,677:222-229.
    [14]IBRAHIM K M,MHAEDE M,WAGNER L.Microstructure evolution and mechanical properties of heat treated LCB titanium alloy[J].Transactions of Nonferrous Metals Society of China,2012,22:2609-2615.
    [15]CHEN B Y,HWANG K S.Effect of cooling process on theαphase formation and mechanical properties of sintered Ti-Fe alloys[J].Materials Science and Engineering A,2011,528:4556-4563.
    [16]HSU H C,HSU S K,WU S C,LEE C J,HO W F.Structure and mechanical properties of as-cast Ti-5Nb-x Fe alloys[J].Materials Characterization,2010,61:851-858.
    [17]MIN X H,EMURA S,ZHANG L,TSUZAKI K.Effect of Fe and Zr additions onωphase formation inβ-type Ti-Mo alloys[J].Materials Science and Engineering A,2008,497:74-78.
    [18]MIN X H,EMURA S,NISHIMURA T,TSUCHIYA K,TSUZAKI K.Effects of Fe addition on tensile deformation mode and crevice corrosion resistance in Ti-15Mo alloy[J].Materials Science and Engineering A,2010,527:2693-2701.
    [19]MIN X H,TSUZAKI K,EMURA S,TSUCHIYA K.Enhancement of uniform elongation in high strength Ti-Mo based alloys by combination of deformation modes[J].Materials Science and Engineering A,2011,528:4569-4578.
    [20]FANNING J C.Properties of TIMETAL 555(Ti-5Al-5Mo-5V-3Cr-0.6Fe)[J].Journal of Materials Engineering and Performance,2005,14:788-791.
    [21]ZHENG Y,WILLIAMS R E A,WANG D,SHI R,NAG S,KAMI P,SOSA J M,WANG Y,FRASER H L.Role ofωphase in the formation of extremely refined intragranularαprecipitates in metastableβ-titanium alloys[J].Acta Materialia,2016,103:850-858.
    [22]JONES N G,DASHWOOD R J,JACKSON M,DYE D.βphase decomposition in Ti-5Al-5Mo-5V-3Cr[J].Acta Materialia,2009,57:3830-3839.
    [23]NAG S,ZHENG Y,WILLIAMS R E A,BOYNE A,FRASER H L.Non-classical homogeneous precipitation mediated by compositional fluctuations in titanium alloys[J].Acta Materialia,2012,60:6247-6256.
    [24]KAR S K,SUMAN S,SHIVAPRASAD S,BHATTACHARJEE A.Processing-microstructure-yield strength correlation in a nearβTi alloy Ti-5Al-5Mo-5V-3Cr[J].Materials Science and Engineering A,2014,610:171-180.
    [25]QIN D,LU Y,LIU Q,ZHOU L.Effects of Si addition on mechanical properties of Ti-5Al-5V-5Mo-3Cr alloy[J].Materials Science and Engineering A,2013,561:460-467.
    [26]OPINI V C,SALVADOR C A F,CHAVES R R,CARAM R.αphase precipitation and mechanical properties of Nb-modified Ti-5553alloy[J].Materials Science and Engineering A,2016,670:112-121.
    [27]CAMPO K N,ANDRADE D R,CARAM R.On the hardenability of Nb-modified metastable beta Ti-5553 alloy[J].Journal of Alloys and Compounds,2016,667:211-218.
    [28]BALACHANDRAN S,KASHIWAR A,CHOUDHURY A,BANERJEE D,SHI R,WANG Y.On variant distribution and coarsening behavior of theαphase in a metastableβtitanium alloy[J].Acta Materialia,2016,106:374-387.
    [29]CAPDEVILA C,ANDRéS C G,CABALLERO F G.Incubation time of isothermally transformed allotriomorphic ferrite in medium carbon steels[J].Scripta Materialia,2001,44:129-134.
    [30]LIU F,SOMMER F,BOS C,MITTEMEIJER E J.Analysis of solid state phase transformation kinetics:Models and recipes[J].International Materials Reviews,2007,52:193-212.
    [31]YE F,ZHANG W Z,QIU D.A TEM study of the habit plane structure of intragranular proeutectoidαprecipitates in a Ti-7.26wt%Cr alloy[J].Acta Materialia,2004,52:2449-2460.
    [32]CARMAN A,ZHANG L C,IVASISHIN O M,PERELOMA E V.Role of alloying elements in microstructure evolution and alloying elements behaviour during sintering of a near-βtitanium alloy[J].Materials Science and Engineering A,2011,528:1686-1693.
    [33]ZHANG H,JOHANSSON B,AHUJA R,VITOS L.First-principles study of solid-solution hardening in steel alloys[J].Computational Materials Science,2012,55:269-272.
    [34]LABUSCH R.Statistical theories of solid solution hardening[J].Acta Metallurgica,1972,20:917-927.(in Germen)
    [35]GYPEN L A,DERUYTTERE A.Multi-component solid solution hardening[J].Journal of Materials Science,1977,12:1034-1038.
    [36]TODA-CARABALLO I,RIVERA-DíAZ-DEL-CASTILLO P E J.Modelling solid solution hardening in high entropy alloys[J].Acta Materialia,2015,85:14-23.
    [37]HE B,LI J,CHENG X,WANG H M.Brittle fracture behavior of a laser additive manufactured near-βtitanium alloy after low temperature aging[J].Materials Science and Engineering A,2017,699:229-238.
    [38]WU X,YANG M,YUAN F,WU G,WEI Y,HUANG X,ZHU Y.Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112:14501-14505.
    [39]MANTRI S A,CHOUDHURI D,ALAM T,VISWANATHAN G B,SOSA J M,FRASER H L,BANERJEE R.Tuning the scale ofαprecipitates inβ-titanium alloys for achieving high strength[J].Scripta Materialia,2018,154:139-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700