Molecular mapping of a novel wheat powdery mildew resistance gene Ml92145E8-9 and its application in wheat breeding by marker-assisted selection
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Molecular mapping of a novel wheat powdery mildew resistance gene Ml92145E8-9 and its application in wheat breeding by marker-assisted selection
  • 作者:Xiaocheng ; Yu ; Shizhong ; Ren ; Lanfei ; Zhao ; Jun ; Guo ; Yinguang ; Bao ; Yingxue ; Ma ; Hongwei ; Wang ; Herbert ; W.Ohm ; Dazhao ; Yu ; Hongjie ; Li ; Lingrang ; Kong
  • 英文作者:Xiaocheng Yu;Shizhong Ren;Lanfei Zhao;Jun Guo;Yinguang Bao;Yingxue Ma;Hongwei Wang;Herbert W.Ohm;Dazhao Yu;Hongjie Li;Lingrang Kong;State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University;Department of Agronomy, Purdue University;Hubei Academy of Agricultural Sciences;Institute of Crop Sciences, Chinese Academy of Agricultural Sciences;
  • 英文关键词:Marker-assisted selection;;Ml92145E8-9;;Powdery mildew;;Triticum aestivum L.
  • 中文刊名:CROP
  • 英文刊名:作物学报(英文版)
  • 机构:State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University;Department of Agronomy, Purdue University;Hubei Academy of Agricultural Sciences;Institute of Crop Sciences, Chinese Academy of Agricultural Sciences;
  • 出版日期:2018-12-15
  • 出版单位:The Crop Journal
  • 年:2018
  • 期:v.6
  • 基金:financially supported by Geneti-cally Modified Organisms Breeding Major Projects(2016ZX08009003-001-006);; the National Natural Science Foundation of China(31471488 and 31520203911);; the National Basic Research Program of China(2014CB138100)
  • 语种:英文;
  • 页:CROP201806006
  • 页数:7
  • CN:06
  • ISSN:10-1112/S
  • 分类号:59-65
摘要
Powdery mildew, caused by Blumeria graminis f. sp. tritici(Bgt), is one of the most devastating diseases of common wheat(Triticum aestivum L.). The wheat line 92145 E8-9 is immune to Bgt isolate E09. Genetic analysis reveals that the powdery mildew resistance in 92145 E8-9 is controlled by a single dominant gene, temporarily designated Ml92145 E8-9. Bulkedsegregant analysis(BSA) with simple sequence repeat(SSR) markers indicates that Ml92145 E8-9 is located on chromosome 2 AL. According to the reactions of 92145 E8-9,VPM1(Pm4 b carrier), and Lankao 906(PmLK906 carrier) to 14 Bgt isolates, the resistance spectrum of 92145 E8-9 differs from those of Pm4 b and PmLK906, both of which were previously localized to 2 AL. To test the allelism among Ml92145 E8-9, Pm4 b and PmLK906, two F2 populations of 92145 E8-9 × VPM1(Pm4 b) and 92145 E8-9 × Lankao 906(PmLK906) were developed in this study. Screening of 784 F2 progeny of 92145 E8-9 × VPM1 and 973 F2 progeny of 92145 E8-9 × Lankao 906 for Bgt isolate E09 identified 37 and 19 susceptible plants, respectively. These findings indicated that Ml92145 E8-9 is non-allelic to either Pm4 b or PmLK906. Thus, Ml92145 E8-9 is likely to be a new powdery mildew resistance gene on2 AL. New polymorphic markers were developed based on the collinearity of genomic regions of Ml92145 E8-9 with the reference sequences of the International Wheat Genome Sequencing Consortium(IWGSC). Ml92145 E8-9 was mapped to a 3.6 c M interval flanked by molecular markers Xsdauk13 and Xsdauk682. This study also developed five powdery mildew-resistant wheat lines(SDAU3561, SDAU3562, SDAU4173, SDAU4174, and SDAU4175)using flanking marker-aided selection. The markers closely linked to Ml92145 E8-9 would be useful in marker-assisted selection for wheat powdery mildew resistance breeding.
        Powdery mildew, caused by Blumeria graminis f. sp. tritici(Bgt), is one of the most devastating diseases of common wheat(Triticum aestivum L.). The wheat line 92145 E8-9 is immune to Bgt isolate E09. Genetic analysis reveals that the powdery mildew resistance in 92145 E8-9 is controlled by a single dominant gene, temporarily designated Ml92145 E8-9. Bulkedsegregant analysis(BSA) with simple sequence repeat(SSR) markers indicates that Ml92145 E8-9 is located on chromosome 2 AL. According to the reactions of 92145 E8-9,VPM1(Pm4 b carrier), and Lankao 906(PmLK906 carrier) to 14 Bgt isolates, the resistance spectrum of 92145 E8-9 differs from those of Pm4 b and PmLK906, both of which were previously localized to 2 AL. To test the allelism among Ml92145 E8-9, Pm4 b and PmLK906, two F2 populations of 92145 E8-9 × VPM1(Pm4 b) and 92145 E8-9 × Lankao 906(PmLK906) were developed in this study. Screening of 784 F2 progeny of 92145 E8-9 × VPM1 and 973 F2 progeny of 92145 E8-9 × Lankao 906 for Bgt isolate E09 identified 37 and 19 susceptible plants, respectively. These findings indicated that Ml92145 E8-9 is non-allelic to either Pm4 b or PmLK906. Thus, Ml92145 E8-9 is likely to be a new powdery mildew resistance gene on2 AL. New polymorphic markers were developed based on the collinearity of genomic regions of Ml92145 E8-9 with the reference sequences of the International Wheat Genome Sequencing Consortium(IWGSC). Ml92145 E8-9 was mapped to a 3.6 c M interval flanked by molecular markers Xsdauk13 and Xsdauk682. This study also developed five powdery mildew-resistant wheat lines(SDAU3561, SDAU3562, SDAU4173, SDAU4174, and SDAU4175)using flanking marker-aided selection. The markers closely linked to Ml92145 E8-9 would be useful in marker-assisted selection for wheat powdery mildew resistance breeding.
引文
[1]V.M.Mwale,X.L.Tang,E.Chilembwe,Molecular detection of disease resistance genes to powdery mildew(Blumeria graminis f.sp.tritici)in wheat(Triticum aestivum)cultivars,Afr.J.Biotechnol.16(2017)22-31.
    [2]A.Morgounov,H.A.Tufan,R.Sharma,B.Akin,A.Bagci,H.J.Braun,Y.Kaya,M.Keser,T.S.Payne,K.Sonder,R.Mcintosh,Global incidence of wheat rusts and powdery mildew during 1969-2010 and durability of resistance of winter wheat variety Bezostaya 1,Eur.J.Plant Pathol.132(2012)323-340.
    [3]S.H.Hulbert,C.A.Webb,S.M.Smith,Q.Sun,Resistance gene complexes:evolution and utilization,Annu.Rev.Phytopathol.39(2001)285-312.
    [4]N.Liu,Z.L.Liu,G.S.Gong,M.Zhang,X.Wang,Y.Zhou,X.B.Qi,H.B.Chen,J.Z.Yang,P.G.Luo,C.P.Yang,Virulence structure of Blumeria graminis f.sp.tritici and its genetic diversity by ISSR and SRAP profiling analyses,PLoS One 10(2015),e0130881..
    [5]Y.Hao,R.Parks,C.Cowger,Z.Chen,Y.Wang,D.Bland,J.P.Murphy,M.Guedira,G.Brown-Guedira,J.Johnson,Molecular characterization of a new powdery mildew resistance gene Pm54 in soft red winter wheat,Theor.Appl.Genet.128(2014)465-476.
    [6]R.A.Mcintosh,J.Dubcovsky,W.J.Rogers,C.Morris,R.Appels,X.C.Xia,Catalogue of Gene Symbols for Wheat:2013-2014,https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2013.pdf 2014.
    [7]L.M.Miranda,J.P.Murphy,D.Marshall,C.Cowger,S.Leath,Chromosomal location of Pm35,a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat(Triticum aestivum L.),Theor.Appl.Genet.114(2007)1451-1456.
    [8]P.T.Ma,H.X.Xu,Y.F.Xu,L.H.Li,Y.M.Qie,Q.L.Luo,X.T.Zhang,X.Q.Li,Y.L.Zhou,D.An,Molecular mapping of a new powdery mildew resistance gene Pm2b in Chinese breeding line KM2939,Theor.Appl.Genet.128(2015)613-622.
    [9]R.A.Mcintosh,E.P.Baker,Cytogenetical studies in wheat IV.Chromosome location and linkage studies involving the PM2locus for powdery mildew resistance,Euphytica 19(1970)71-77.
    [10]J.Sánchez-Martín,B.Steuernagel,S.Ghosh,G.Herren,S.Hurni,N.Adamski,J.Vrána,M.Kubaláková,S.G.Krattinger,T.Wicker,J.Dole?el,B.Keller,B.B.H.Wulff,Rapid gene isolation in barley and wheat by mutant chromosome sequencing,Genome Biol.17(2016)221.
    [11]H.X.Xu,Y.J.Yi,P.T.Ma,Y.M.Qie,X.Y.Fu,Y.F.Xu,X.T.Zhang,D.An,Molecular tagging of a new broad-spectrum powdery mildew resistance allele Pm2c in Chinese wheat landrace Niaomai,Theor.Appl.Genet.128(2015)2077-2084.
    [12]F.J.Zeller,S.L.K.Hsam,Progress in breeding for resistance to powdery mildew in common wheat(Triticum aestivum L.),in:A.E.Slinkard,R.A.McIntosh(Eds.),Proceedings of the Ninth International Wheat Genetics Symposium,August 2-7,1998,Saskatoon,Saskatchewan,Canada 1998,pp.178-180.
    [13]M.Schmolke,V.Mohler,L.Hartl,F.J.Zeller,S.L.K.Hsam,Anew powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn(Triticum monococcum),Mol.Breed.29(2012)449-456.
    [14]R.A.Mcintosh,J.Dubcovsky,W.J.Rogers,C.Morris,X.C.Xia,Catalogue of Gene Symbols for Wheat,http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp 2017Supplement.
    [15]P.Ma,H.X.Xu,L.H.Li,H.X.Zhang,G.H.Han,Y.F.Xu,X.Y.Fu,X.T.Zhang,D.An,Characterization of a new Pm2 allele conferring powdery mildew resistance in the wheat germplasm line FG-1,Front.Plant Sci.7(2016)546.
    [16]H.J.Li,X.M.Wang,F.J.Song,C.P.Wu,X.F.Wu,N.Zhang,Y.Zhou,X.Y.Zhang,Response to powdery mildew and detection of resistance genes in wheat cultivars from China,Acta Agron.Sin.37(2011)943-954(in Chinese with English abstract).
    [17]J.Z.Jia,S.C.Zhao,X.Y.Kong,Y.R.Li,G.Y.Zhao,W.M.He,R.D.Appels,M.Pfeifer,Y.Tao,X.Y.Zhang,R.L.Jing,C.Zhang,Y.Z.Ma,L.F.Gao,C.Gao,M.Spannagl,K.F.X.Mayer,D.Li,S.K.Pan,F.Y.Zheng,Q.Hu,X.C.Xia,J.W.Li,Q.S.Liang,J.Chen,T.Wicker,C.Y.Gou,H.H.Kuang,G.Y.He,Y.D.Luo,B.Keller,Q.J.Xia,P.Lu,J.Y.Wang,H.F.Zou,R.Z.Zhang,J.Y.Xu,J.L.Gao,C.Middleton,Z.W.Quan,G.M.Liu,J.Wang,H.M.Yang Iwgsc,X.Liu,Z.H.He,L.Mao,J.Wang,Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation,Nature 496(2013)91-95.
    [18]H.Q.Ling,S.Zhao,D.Liu,J.Wang,H.Sun,C.Zhang,H.Fan,D.Li,L.Dong,Y.Tao,C.Gao,H.L.Wu,Y.W.Li,Y.Cui,X.S.Guo,S.S.Zheng,B.Wang,K.Yu,Q.S.Liang,W.L.Yang,X.Y.Lou,J.Chen,M.J.Feng,J.B.Jian,X.F.Zhang,G.B.Luo,Y.Jiang,J.J.Liu,Z.B.Wang,Y.H.Sha,B.R.Zhang,H.J.Wu,D.Z.Tang,Q.H.Shen,P.Y.Xue,S.H.Zou,X.J.Wang,X.Liu,F.M.Wang,Y.P.Yang,X.L.An,Z.Y.Dong,K.P.Zhang,X.Q.Zhang,M.C.Luo,J.Dvorak,Y.P.Tong,J.Wang,H.M.Yang,Z.S.Li,D.W.Wang,A.M.Zhang,J.Wang,Draft genome of the wheat A-genome progenitor Triticum urartu,Nature 496(2013)87-90.
    [19]N.Yahiaoui,P.Srichumpa,R.Dudler,B.Keller,Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat,Plant J.37(2004)528-538.
    [20]R.Michelmore,Molecular approaches to manipulation of disease resistance genes,Annu.Rev.Phytopathol.33(1995)393-427.
    [21]S.Landjeva,V.Korzun,A.B?rner,Molecular markers:actual and potential contributions to wheat genome characterization and breeding,Euphytica 156(2007)271-296.
    [22]Z.Liu,Q.Sun,Z.Ni,T.Yang,R.A.McIntosh,Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat,Plant Breed.118(1999)215-219.
    [23]F.S.Zeng,L.J.Yang,S.J.Gong,W.Q.Shi,X.J.Zhang,H.Wang,L.B.Xiang,M.F.Xue,D.Z.Yu,Virulence and diversity of Blumeria graminis f.sp.tritici populations in China,J.Integr.Agric.13(2014)2424-2437.
    [24]M.A.Saghai-Maroof,K.M.Soliman,R.A.Jorgensen,R.W.Allard,Ribosomal DNA spacer-length polymorphisms in barley:Mendelian inheritance,chromosomal location,and population dynamics,Proc.Natl.Acad.Sci.U.S.A.81(1984)8014-8018.
    [25]R.W.Michelmore,I.Paran,R.V.Kesseli,Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations,Proc.Natl.Acad.Sci.U.S.A.88(1991)9828-9832.
    [26]J.Guo,X.L.Zhang,Y.L.Hou,J.J.Cai,X.R.Shen,T.T.Zhou,H.H.Xu,H.W.Ohm,H.W.Wang,A.F.Li,F.P.Han,H.G.Wang,L.R.Kong,High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection,Theor.Appl.Genet.128(2015)2301-2316.
    [27]R.Brenchley,M.Spannagl,M.Pfeifer,G.L.A.Barker,R.D'Amore,A.M.Allen,N.McKenzie,M.Kramer,A.Kerhornou,D.Bolser,S.Kay,D.Waite,M.Trick,I.Bancroft,Y.Gu,N.X.Huo,M.C.Luo,S.Sehgal,B.Gill,S.Kianian,O.Anderson,P.Kersey,J.Dvorak,W.R.McCombie,A.Hall,K.F.X.Mayer,K.J.Edwards,M.W.Bevan,N.Hall,Analysis of the bread wheat genome using whole-genome shotgun sequencing,Nature491(2012)705-710.
    [28]J.W.Van Ooijen,JoinMap:Version 4.0:Software for the Calculation of Genetic Linkage Maps in Experimental Population,Kyazma B.V.,Wageningen,The Netherlands,2006.
    [29]D.D.Kosambi,The estimation of map distances from recombination values,Ann.Eugenics 12(1943)172-175.
    [30]R.A.Mcintosh,F.G.A.Bennett,Cytogenetical studies in wheat.IX.Monosomic analyses,telocentric mapping and linkage relationships of genes Sr21,Pm4 and Mle,Aust.J.Biol.Sci.32(1979)115-126.
    [31]J.S.Niu,B.Q.Wang,Y.H.Wang,A.Z.Cao,Z.J.Qi,T.M.Shen,Chromosome location and microsatellite markers linked to a powdery mildew resistance gene in wheat line‘Lankao 90(6)’,Plant Breed.127(2008)346-349.
    [32]Z.D.Zhu,R.H.Zhou,X.Y.Kong,Y.C.Dong,J.Z.Jia,Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat,Genome 48(2005)585-590.
    [33]V.Mohler,C.Bauer,G.Schweizer,H.Kempf,L.Hartl,Pm50:a new powdery mildew resistance gene in common wheat derived from cultivated emmer,J.Appl.Genet.54(2013)259-263.
    [34]W.G.Xu,C.X.Li,L.Hu,H.W.Wang,H.B.Dong,J.Z.Zhang,X.C.Zan,Identification and molecular mapping of PmHNK54:a novel powdery mildew resistance gene in common wheat,Plant Breed.130(2011)603-607.
    [35]B.S.Fu,Y.Chen,N.Li,H.Q.Ma,Z.X.Kong,L.X.Zhang,H.Y.Jia,Z.Q.Ma,PmX:a recessive powdery mildew resistance gene at the Pm4 locus identified in wheat landrace Xiaohongpi,Theor.Appl.Genet.126(2013)913-921.
    [36]Z.Q.Ma,M.E.Sorrells,S.D.Tanksley,RFLP markers linked to powdery mildew resistance genes Pm1,Pm2,Pm3,and Pm4 in wheat,Genome 37(1994)871-875.
    [37]Y.F.Hao,A.F.Liu,Y.H.Wang,D.S.Feng,J.R.Gao,X.F.Li,S.B.Liu,H.G.Wang,Pm23:a new allele of Pm4 located on chromosome 2AL in wheat,Theor.Appl.Genet.117(2008)1205-1212.
    [38]H.Muranty,M.T.Pavoine,B.Jaudeau,W.Radek,G.Doussinault,D.Barloy,A quantitative approach detects three QTLs involved in powdery mildew resistance at the seedling stage in the winter wheat line RE714,Crop Pasture Sci.59(2008)714-722.
    [39]Z.Q.Ma,J.B.Wei,S.H.Cheng,PCR-based markers for the powdery mildew resistance gene Pm4a in wheat,Theor.Appl.Genet.109(2004)140-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700