天然气水合物钻采一体化模拟实验系统及降压法开采初步实验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:An integrated experimental system for gas hydrate drilling and production and a preliminary experiment of the depressurization method
  • 作者:刘昌岭 ; 李彦龙 ; 刘乐乐 ; 胡高伟 ; 陈强 ; 吴能友 ; 孟庆国
  • 英文作者:Liu Changling;Li Yanlong;Liu Lele;Hu Gaowei;Chen Qiang;Wu Nengyou;Meng Qingguo;Key Laboratory of Gas Hydrate,Ministry of Natural Resources//Qingdao Institute of Marine Geology;Laboratory for Marine Mineral Resources,Qingdao National Laboratory for Marine Science and Technology;
  • 关键词:天然气水合物 ; 模拟实验系统 ; 钻采一体化 ; 实时监测 ; 降压法开采 ; CO2水合物 ; 产出规律 ; 电阻层析成像
  • 英文关键词:Natural gas hydrate;;Simulated experimental system;;Drilling and production integration;;Real-time monitoring;;Depressurization method;;CO2 hydrate;;Output law;;Electrical resistance tomography
  • 中文刊名:TRQG
  • 英文刊名:Natural Gas Industry
  • 机构:自然资源部天然气水合物重点实验室·青岛海洋地质研究所;青岛海洋科学与技术试点国家实验室海洋矿产资源评价与探测技术功能实验室;
  • 出版日期:2019-06-25
  • 出版单位:天然气工业
  • 年:2019
  • 期:v.39;No.308
  • 基金:国家自然科学基金青年科学基金项目(编号:41606078、41876051);; 国土资源部中国地质调查局科研项目“天然气水合物测试技术与模拟实验”(编号:DD20160216)
  • 语种:中文;
  • 页:TRQG201906025
  • 页数:8
  • CN:06
  • ISSN:51-1179/TE
  • 分类号:171-178
摘要
现有的天然气水合物(以下简称水合物)开采技术实验研究通常在较小尺寸的模拟实验装置中进行,由于反应釜样品尺寸较小,导致明显的边界效应且实验结果难以在现场中得到应用,因而研发大尺寸水合物综合开采实验系统刻不容缓。为此,针对我国南海神狐海域泥质粉砂型水合物储层,基于降压法开采思路和工艺流程,研发了一套水合物钻、采一体化模拟实验系统,主要包括主体高压装置、钻采一体化、气液供给、围压加载、回压控制、气液固分离及在线监测、温度控制、数据测控与后处理等模块;利用该系统进行了冰点附近CO_2水合物初步开采模拟实验;基于实验结果建立了数据获取及分析的基本流程,初步获得了在降压法开采CO_2水合物过程中储层的温度、压力场变化以及产气、产水规律。实验结果表明:①该实验系统可模拟实际地质条件制备接近海洋水合物储层的样品,通过电阻层析成像技术实时监测水合物成藏与分布情况;②该实验系统还可模拟钻井、降压开采工艺与过程,实时监测出砂与管道流动等过程中产气量、产水量、产砂量、温度、压力等多个物理参数的变化情况,实现试采全过程的实验模拟。结论认为:①在出口压力一定的情况下,CO_2水合物的产气、产水速率具有很大的波动性;②CO_2水合物分解过程中储层温度分布不均匀,最大的温度降幅为5℃,表明水合物分解呈现出非均一性与随机性。
        The current natural gas hydrate extraction experimental research has always been carried out in a small-scale simulation test device, and the resulted boundary effect is so obvious due to the small size of samples in the reaction kettle that the experimental results will be difficult to apply in the field. In view of this, aiming at the clayey-silt gas hydrate reservoir in the Shenhu area, South China Sea, a set of integrated experimental system for the drilling and exploitation of gas hydrate is developed innovatively based on the idea of depressurization method and the technological process. This experimental system consists of high-pressure system, drilling simulation module,liquid supply module, gas supply module, confining pressure loading module, back-pressure control module, output separation module,temperature control module, data acquisition module and operation platform. With this experimental system, the samples similar to marine hydrate formations were prepared from the experimental system with the actual geological surroundings simulated. The electrical resistance tomography was used to real-time monitor the dynamic distribution of gas hydrate in sediments inside the high-pressure vessel(521 L). This experimental system can also simulate the process of wellbore drilling in hydrate reservoirs and depressurization extraction, and realize the real-time monitoring of parameters in the whole trial production process such as gas production, water production, sand production, temperature, pressure, etc. We also carried out a preliminary experiment on the CO_2 hydrate extraction via the depressurization method by using this simulation experimental system. On this basis, the fundamental procedures for data access and analysis were thus established and the variation of temperature and pressure fields and gas/water output laws in the reservoirs were both achieved in the process of CO_2 hydrate extraction by the depressurization method. The results show that(1) the gas production and water production rate fluctuate greatly even at a constant export pressure;(2) the reservoir temperature distribution is uneven during hydrate decomposition, and the maximum temperature is decreased by 5 ℃, suggesting that the hydrate decomposition is heterogeneous and stochastic. The abundant and credible experimental results based on this system are expected to provide important data support for marine gas hydrate production tests.
引文
[1]Wang Yi,Li Xiaosen,Li Gang,Huang Ningsheng&Feng Jingchun.Experimental study on the hydrate dissociation in porous media by five-spot thermal huff and puff method[J].Fuel,2014(117):688-696.
    [2]刘乐乐,鲁晓兵,张旭辉.砂土沉积物中甲烷水合物降压分解渗流阵面实验[J].天然气工业,2013,33(11):130-136.Liu Lele,Lu Xiaobing&Zhang Xuhui.An experimental study of seepage front due to methane hydrate dissociation by depressurization in sandy sediments[J].Natural Gas Industry,2013,33(11):130-136.
    [3]Merey S&Sinayuc C.Experimental set-up design for gas production from the Black Sea gas hydrate reservoirs[J].Journal of Natural Gas Science and Engineering,2016(33):162-185.
    [4]Khlebnikov VN,Antonov SV,Mishin AS,梁萌,Khamidullina IV,Zobov PM,et al.多孔介质中天然气水合物生成的主要影响因素[J].天然气工业,2017,37(5):38-45.Khlebnikov VN,Antonov SV,Mishin AS,Liang Meng,Khamidullina IV,Zobov PM,et al.Major factors influencing the formation of natural gas hydrates in porous media[J].Natural Gas Industry,2017,37(5):38-45.
    [5]孙建业,业渝光,刘昌岭,张剑,刁少波.沉积物中天然气水合物减压分解实验[J].现代地质,2010,24(3):614-621.Sun Jianye,Ye Yuguang,Liu Changling,Zhang Jian&Diao Shaobo.Experimental research of gas hydrate dissociation in sediments by depressurization method[J].Geoscience,2010,24(3):614-621.
    [6]孙建业,刘乐乐,王小文,王菲菲,刘昌岭.沉积物中甲烷水合物的CO2置换实验[J].天然气工业,2015,35(8):56-62.Sun Jianye,Liu Lele,Wang Xiaowen,Wang Feifei&Liu Changling.Experimental study on the replacement of methane hydrate in sediments with CO2[J].Natural Gas Industry,2015,35(8):56-62.
    [7]Nagao J,Oyama H,Konno Y&Jin Y.Development of a largescale laboratory vessel for methane hydrate production tests[C]//EGU General Assembly,22-27 April 2012,Vienna,Austria.
    [8]Beeskow-Strauch B,Spangenberg E,Schicks JM,Giese R,Luzi-Helbing M,Priegnitz M,et al.The big fat LARS:A large reservoir simulator for hydrate formation and gas production[C]//EGUGeneral Assembly Conference,7-12 April 2013,Vienna,Austria,2013.
    [9]Feng Jingchun,Wang Yi,Li Xiaosen,Li Gang&Zhang Yu.Three dimensional experimental and numerical investigations into hydrate dissociation in sandy reservoir with dual horizontal wells[J].Energy,2015(90):836-845.
    [10]Yang Xin,Sun Changyu,Yuan Qing,Ma PC&Chen GJ.Experimental study on gas production from methane hydrate-bearing sand by hot-water cyclic injection[J].Energy&Fuels,2010,24(11):5912-5920.
    [11]赵金洲,周守为,张烈辉,伍开松,郭平,李清平,等.世界首个海洋天然气水合物固态流化开采大型物理模拟实验系统[J].天然气工业,2017,37(9):15-22.Zhao Jinzhou,Zhou Shouwei,Zhang Liehui,Wu Kaisong,Guo Ping,Li Qingping,et al.The first global physical simulation experimental systems for the exploitation of marine natural gas hydrates through solid fluidization[J].Natural Gas Industry,2017,37(9):15-22.
    [12]赵金洲,李海涛,张烈辉,孙万通,伍开松,李清平,等.海洋天然气水合物固态流化开采大型物理模拟实验[J].天然气工业,2018,38(10):76-83.Zhao Jinzhou,Li Haitao,Zhang Liehui,Sun Wantong,Wu Kaisong,Li Qingping,et al.Large-scale physical simulation experiment of solid fluidization exploitation of marine gas hydrate[J].Natural Gas Industry,2018,38(10):76-83.
    [13]刘昌岭,李彦龙,孙建业,吴能友.天然气水合物试采:从实验模拟到场地实施[J].海洋地质与第四纪地质,2017(5):12-26.Liu Changling,Li Yanlong,Sun Jianye&Wu Nengyou.Gas hydrate production test:From experimental simulation to field practice[J].Marine Geology&Quaternary Geology,2017(5):12-26.
    [14]Wu Nengyou,Liu Changling&Hao Xiluo.Experimental simulations and methods for natural gas hydrate analysis in China[J].China Geology,2018,1(1):61-71.
    [15]李彦龙,刘乐乐,刘昌岭,孙建业,业渝光,陈强.天然气水合物开采过程中的出砂与防砂问题[J].海洋地质前沿,2016,32(7):36-43.Li Yanlong,Liu Lele,Liu Changling,Sun Jianye,Ye Yuguang&Chen Qiang.Sanding prediction and sand-control technology in hydrate exploitation:A review and discussion[J].Marine Geology Frontiers,2016,32(7):36-43.
    [16]Cui Ziqiang,Wang Qi,Xue Qian,Fan Wenru,Zhang Lingling,Zhang Cao,et al.A review on image reconstruction algorithms for electrical capacitance/resistance tomography[J].Sensor Review,2016,36(4):429-445.
    [17]Priegnitz M,Thaler J,Spangenberg E,Rücker C&Schicks JM.A cylindrical electrical resistivity tomography array for three-dimensional monitoring of hydrate formation and dissociation[J].Review of Scientific Instruments,2013,84(10):104502.1-8.
    [18]Low SC,Allitt D,Eshtiaghi N&Parthasarathy R.Measuring active volume using electrical resistance tomography in a gassparged model anaerobic digester[J].Chemical Engineering Research&Design,2018,130:42-51.
    [19]Priegnitz M,Thaler J,Spangenberg E,Schicks JM,Schr?tter J&Abendroth S.Characterizing electrical properties and permeability changes of hydrate bearing sediments using ERT data[J].Geophysical Journal International,2015,202(3):1599-1612.
    [20]Yoneda J,Masui A,Konno Y,Jin Y,Egawa K,Kida M,et al.Mechanical properties of hydrate-bearing turbidite reservoir in the first gas production test site of the eastern Nankai Trough[J].Marine&Petroleum Geology,2015,66(2):471-486.
    [21]李彦龙,胡高伟,刘昌岭,吴能友,陈强,刘乐乐,等.天然气水合物开采井防砂充填层砾石尺寸设计方法[J].石油勘探与开发,2017,44(6):961-966.Li Yanlong,Hu Gaowei,Liu Changling,Wu Nengyou,Chen Qiang,Liu Lele,et al.Gravel sizing method for sand control packing in hydrate production test wells[J].Petroleum Exploration and Development,2017,44(6):961-966.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700