Recent development of casing treatments for aeroengine compressors
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent development of casing treatments for aeroengine compressors
  • 作者:Xiaofeng ; SUN ; Xu ; DONG ; Dakun ; SUN
  • 英文作者:Xiaofeng SUN;Xu DONG;Dakun SUN;Fluid and Acoustic Engineering Laboratory,Beihang University;Collaborative Innovation Center for Advanced Aero-Engine,Beihang University;
  • 英文关键词:Casing treatment;;Compressor;;Compressor stability;;Rotating stall;;Stall margin
  • 中文刊名:HKXS
  • 英文刊名:中国航空学报(英文版)
  • 机构:Fluid and Acoustic Engineering Laboratory,Beihang University;Collaborative Innovation Center for Advanced Aero-Engine,Beihang University;
  • 出版日期:2019-01-15
  • 出版单位:Chinese Journal of Aeronautics
  • 年:2019
  • 期:v.32;No.154
  • 基金:supported by the National Natural Science Foundation of China (Nos. 51790514, 11661141020 and 51576008)
  • 语种:英文;
  • 页:HKXS201901001
  • 页数:36
  • CN:01
  • ISSN:11-1732/V
  • 分类号:4-39
摘要
Casing treatment is a mature stabilization technique which has been widely applied on aero-engines for modern aircrafts and turbo-chargers for automobiles. After the investigations of half century since the 1960 s, this technique has been well developed for various configurations with different effectiveness. From the perspective of stabilization mechanism, this paper roughly categorizes the configurations of casing treatment into two types: traditional ones which work by affecting the flow structure of blade tip region; a novel one named as Stall Precursor-Suppressed(SPS) casing treatment. The effectiveness of both types will be demonstrated for their applications on axial compressors and centrifugal compressors with uniform or distorted inlet. And the stabilization mechanism of casing treatments for regular types and SPS one will also be explained respectively. In addition, this review will summarize the methodologies of casing treatments with the numerical simulations for regular grooved configurations and the eigenvalue approach for SPS casing treatment.Looking forward to the future of compressor stabilization, casing treatment technique will still exist as a general and inexpensive option, and the exploration for its effectiveness and mechanism will be deeper with the development of computational fluid dynamics and advanced measurement techniques.
        Casing treatment is a mature stabilization technique which has been widely applied on aero-engines for modern aircrafts and turbo-chargers for automobiles. After the investigations of half century since the 1960 s, this technique has been well developed for various configurations with different effectiveness. From the perspective of stabilization mechanism, this paper roughly categorizes the configurations of casing treatment into two types: traditional ones which work by affecting the flow structure of blade tip region; a novel one named as Stall Precursor-Suppressed(SPS) casing treatment. The effectiveness of both types will be demonstrated for their applications on axial compressors and centrifugal compressors with uniform or distorted inlet. And the stabilization mechanism of casing treatments for regular types and SPS one will also be explained respectively. In addition, this review will summarize the methodologies of casing treatments with the numerical simulations for regular grooved configurations and the eigenvalue approach for SPS casing treatment.Looking forward to the future of compressor stabilization, casing treatment technique will still exist as a general and inexpensive option, and the exploration for its effectiveness and mechanism will be deeper with the development of computational fluid dynamics and advanced measurement techniques.
引文
1.Emmons HW,Pearson CE,Grant HP.Compressor surge and stall propagation.Trans ASME 1955;77(3):455-69.
    2.Koch CC.Experimental evaluation of outer case blowing or bleeding of single stage axial flow compressor,Part VI-Final report.Washington,D.C.:NASA;1970.Report No.:NASA CR-54592.
    3.Takata HH,Tsukuda YY.Stall margin improvement by casing treatment-Its mechanism and effectiveness.ASME J Eng Power1977;99(1):121-33.
    4.Kang CS,McKenzie AB,Elder RL.Recessed casing treatment effects on fan performance and flow field.New York:ASME;1995.Report No.:95-GT-197
    5.Fabri J,Reboux J.Effect of outer casing treatment and tip clearance on stall margin of a supersonic rotating cascade.New York:ASME;1975.Report No.:75-GT-95.
    6.Kroeckel TT,Hiller SJ,Jescke PP.Application of a multistage casing treatment in a high speed axial compressor test rig.New York:ASME;2011.Report No.:GT2011-46315.
    7.Moore RD,Kovich G,Blade RJ.Effect of casing treatment on overall and blade-element performance of a compressor rotor Washington,D.C.:NASA;1971.Report No.:NASA TN D-6538
    8.Osborn WM,Lewis JGW,Heidelberg LJ.Effect of several porous casing treatments on stall limit and on overall performance of an axial flow compressor rotor.Washington,D.C.:NASA;1971Report No.:NASA-TN-D-6537.
    9.Cumpsty NA.Part-circumference casing treatment and the effect on compressor stall.New York:ASME;1989.Report No.:89-GT-312.
    10.Houghton T,Day I.Stability enhancement by casing grooves:The importance of stall inception mechanism and solidity.ASME JTurbomach 2012;134(2):021003.
    11.Houghton T,Day I.Enhancing the stability of subsonic compressors using casing grooves.ASME J Turbomach 2011;133(2)021007.
    12.Muller MW,Schier HP,Voges M,Hah C.Investigation of passage flow features in a transonic compressor rotor with casing treatments.New York:ASME;2011.Report No.:GT2011-45364
    13.Rolfes M,Lange M,Vogeler K,Mailach R.Experimental and numerical investigation of a circumferential groove casing treatment in a low speed axial research compressor at different tip clearances.New York:ASME;2017.Report No.:GT2017-63051
    14.Prince DC,Wisler DC,Hilvers DE.Study of casing treatment stal margin improvement phenomenon.New York:ASME;1975Report No.:75-GT-60.
    15.Smith GJ,Cumpsty NA.Flow phenomena in compressor casing treatment.ASME J Eng Gas Turbines Power 1984;106(3):532-41
    16.Crook AJ,Greitzer EM,Tan CS,Adamczyk JJ.Numerica simulation of compressor endwall and casing treatment flow phenomena.ASME J Turbomach 1993;115(3):501-11.
    17.Yamaguchi N,Ogata M.Improvement of stalling characteristics of an axial-flow fan by radial-vaned air separators.ASME JTurbomach 2010;132(2):021015.
    18.Du J,Seume JR.Design of casing treatment on a mixed-flow compressor.New York:ASME;2017.Report No.:GT2017-65226.
    19.Raw JA.Surge margin enhancement by a porous throat diffuser Can Aeronaut Space J 1986;32(1):54-60.
    20.Ono Y.Solutions for better engine performance at low load by mitsubishi turbochargers.27th CIMAC world congress;2013 May13-16;Shanghai,China;2013.
    21.Galloway L,Spence S,Kim SI,Rusch D,Vogel K,Hunziker RAn investigation of the stability enhancement of a centrifuga compressor stage using a porous throat diffuser.ASME JTurbomach 2018;140(1):011008.
    22.Paduano JD,Greitzer EM,Epstein AH.Compression system stability and active control.J Annu Rev Fluid Mech 2001;33(1):491-517.
    23.Sun X.On the relation between the inception of rotating stall and casing treatment.Reston:AIAA;1996.Report No.:AIAA-1996-2579.
    24.Sun X,Sun D,Liu X,Yu W,Wang X.Theory of compressor stability enhancement using novel casing treatment,Part IMethodology.AIAA J 2014;30(5):1224-35.
    25.Sun D,Liu X,Jin D,Gui X,Sun X.Theory of compressor stability enhancement using novel casing treatment,Part IIExperiment.AIAA J 2014;30(5):1236-47.
    26.Sun X,Sun D,Yu W.A model to predict stall inception of transonic axial flow fan/compressors.Chin J Aeronaut 2011;24(6):687-700.
    27.Sun D,Nie C,Liu X,Lin F,Sun X.Further investigation on transonic compressor stall margin enhancement with stall precursor-suppressed casing treatment.ASME J Turbomach 2015;138(2)021001.
    28.Li F,Li J,Dong X,Sun D,Sun X.Influence of SPS casing treatment on axial flow compressor subjected to radial pressure distortion.Chin J Aeronaut 2017;30(2):685-97.
    29.Dong X,Sun D,Li F,Jin D,Gui X,Sun X.Effects of rotating inlet distortion on compressor stability with stall precursorsuppressed casing treatment.ASME J Fluids Eng 2015;137(11):111101.
    30.Greitzer EM,Nikkanen JP,Haddad DE,Mazzawy RS,Joslyn HD.A fundamental criterion for the application of rotor casing treatment.ASME J Fluids Eng 1979;101(2):237-43.
    31.Fujita H,Takata H.A study on configurations of casing treatment for axial flow compressors.Bull JSME 1984;27(230):1675-81.
    32.Du J,Li JC,Gao LP,Lin F,Chen JY.The impact of casing groove location on stall margin and tip clearance flow in a lowspeed axial compressor.ASME J Turbomach 2016;138(12):121007.
    33.Sakuma Y,Watanabe T,Himeno T,Kato D,Murooka T,Shuto Y.Numerical analysis of flow in a transonic compressor with a single circumferential casing groove:Influence of groove location and depth on flow instability.ASME J Turbomach 2014;136(3):031017.
    34.Hathaway MD.Self-recirculating casing treatment concept for enhanced compressor performance.New York:ASME;2002.Report No.:GT2002-30368.
    35.Nezym V.A statistical model for the effect of casing treatment recesses on compressor rotor performance.Exp Therm Fluid Sci2007;31(8):1165-76.
    36.Amann CA,Nordenson GE,Skellenger GD.Casing modification for increasing the surge margin of a centrifugal compressor in an automotive turbine engine.ASME J Eng Power 1975;97(3):329-35.
    37.Wiggins JO,Waltz GL.Centrifugal compressor vaneless space casing treatment.United States patent US4063848.1977 Dec 20.
    38.Jansen W,Carter AF,Swarden MC.Improvements in surge margin for centrifugal compressors.1980.Report No:AGARD-CP-282.
    39.Fisher F.Application of map width enhancement devices to turbocharger compressor stages.Warrendale:SAE International;1988.Report No.:880794
    40.Emmrich RR,Ho¨nen HH,Niehuis RR.Time resolved experimental investigations of an axial compressor with casing treatment.ASME J Turbomach 2009;131(1):011018.
    41.Brandstetter C,Wartzek F,Werner J,Schiffer H,Heinichen F.Unsteady measurements of periodic effects in a transonic compressor with casing treatments.ASME J Turbomach 2016;138(5):051007.
    42.Dong X,Sun D,Li F,Sun X.Stall margin enhancement of a novel casing treatment subjected to circumferential pressure distortion.Aerosp Sci Technol 2018;73:239-55.
    43.Dong X,Sun D,Li F,Jin D,Gui X,Sun X.Effects of Stall precursor-suppressed casing treatment on a low-speed compressor with swirl distortion.ASME J Fluids Eng 2018;140(9):091101.
    44.Jing X,Sun X.Experimental investigations of perforated liners with bias flow.J Acoust Soc Am 1999;106(5):2436-41.
    45.Jing X,Sun X.Effect of plate thickness on impedance of perforated plates with bias flow.AIAA J 2000;38(9):1573-8.
    46.Jing X,Sun X,Wu J,Meng K.Effect of grazing flow on the acoustic impedance of an orifice.AIAA J 2001;39(8):1478-84.
    47.Jing X,Sun X.Sound-excited flow and acoustic nonlinearity at an orifice.Phys Fluids 2002;14(1):268-76.
    48.Crook AJ,Greitzer EM,Tan CS,Adamczyk JJ.Numerical simulation of compressor endwall and casing treatment flow phenomena.New York:ASME;2011.Report No.:92-GT-300.
    49.Jameson A,Schmidt W,Turkel E.Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes.14th fluid and plasma dynamics conference;1981 June 23-25;1981.
    50.Shabbir A,Adamczyk JJ.Flow mechanism for stall margin improvement due to circumferential casing grooves on axial compressors.New York:ASME;2004.Report No.:GT2004-53903.
    51.Legras GG,Gourdain NN,Tre′binjac II,Ottavy XX.Analysis of unsteadiness on casing treatment mechanisms in an axial compressor.New York:ASME;2011.Report No.:GT2011-45806.
    52.Liu X,Hou R,Sun D,Sun X.Flow instability inception model of compressors based on eigenvalue theory.Reston:AIAA;2012Report No.:AIAA-2012-4156.
    53.Sun X,Liu X,Hou R,Sun D.A general theory of flow instability inception in turbomachinery.AIAA J 2013;51(7):1675-87.
    54.McDougall NM,Cumpsty NA,Hynes TP.Stall inception in axia compressors.ASME J Turbomach 1990;112(1):116-25.
    55.Garnier VH,Epstein AH,Greitzer EM.Rotating waves as a stal inception indication in axial compressors.ASME J Turbomach1991;113(2):290-301.
    56.Day IJ.Stall inception in axial flow compressors.ASME JTurbomach 1993;115(1):1-9.
    57.Tryfonidis MM,Etchevers OO,Paduano JD,Epstein AH,Hendricks GJ.Pre-stall behavior of several high-speed compressors.New York:ASME;1994.Report No.:94-GT-387.
    58.Gorrell SE,Russler PM.Stall inception in a high-speed low aspectratio fan including the effects of casing treatments.New York:ASME;1994.Report No.:94-GT-322.
    59.Pan T,Li Q,Wei Y,Lu H.Effects of axisymmetric arc-shaped slot casing treatment on partial surge initiated instability in a transonic axial flow compressor.Aerosp Sci Technol 2017;69:257-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700