涡流发生器和附面层抽吸相结合对于低速压气机叶栅性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Combined Effects of Vortex Generator and Boundary Layer Suction on Performance of Low-Speed Compressor Cascade
  • 作者:马姗 ; 楚武利 ; 张皓光 ; 旷海洋
  • 英文作者:MA Shan;CHU Wu-li;ZHANG Hao-guang;KUANG Hai-yang;School of Power and Energy,Northwestern Polytechnical University;Collaborative Innovation Center of Advanced Aero-Engine;
  • 关键词:低马赫数 ; 轴流压气机叶栅 ; 微型涡流发生器 ; 附面层抽吸
  • 英文关键词:Low Mach number;;Axial flow compressor cascade;;Micro-vortex generator;;Boundary layer suction
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:西北工业大学能源与动力学院;先进航空发动机协同创新中心;
  • 出版日期:2018-12-27 16:07
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.261
  • 基金:国家自然科学基金重点项目(51536006);国家自然科学基金(51576162);; 航空科学基金(2014ZB53014);; 陕西省自然科学基金(2015JM5202)
  • 语种:中文;
  • 页:TJJS201903006
  • 页数:10
  • CN:03
  • ISSN:11-1813/V
  • 分类号:41-50
摘要
为了分析微型涡流发生器(MVG)和附面层吸气(BLS)相结合的方法对高负荷轴流压气机流动特性的影响,将一种弯曲的微型涡流发生器与缝式吸气槽进行不同组合,共组成五组控制模型进行对比。其中,微型涡流发生器安装在叶片上游端壁上,缝式吸气槽位于叶片吸力面靠近尾缘处。计算结果说明:在设计攻角下,COM控制方法在使总压损失明显减小的同时增加静压系数,性能优于单独使用MVG,却不及只使用BLS的控制方法。在失速攻角下,MVG产生的尾涡将位于叶片吸力面-端壁角区之间的低能流体和主流充分混合,使得总压损失大幅度减小了11.54%。在吸气量为1.5%时,COM控制方法可以使总压损失减小达14.59%。
        In the current study, the effects of combination between micro-vortex generator(MVG) and boundary layer suction(BLS) on a high-lode compressor cascade are explored. Five cases are grouped by a kind of micro-vortex generator and suction slot. The MVG are mounted on the end-wall in front of the passage, and the BLS are all applied on the suction side of the blade near the trailing edge. The calculated results show that: at design incidence, the method of combined MVG and BLS(COM) can make the total pressure loss decrease notably as well as the static pressure coefficient increase, which is more superior than MVG but not as good as BLS.At stall incidence, the main flow and low-energy flow between the suction side and end-wall are mixed by induce vortices coming from MVG, and the total pressure loss decrease by 11.54%. At a case with 1.5% suction mass flow ratio, the total pressure loss decreases by 14.59% when the COM control method is applied.
引文
[1]Agarwal Ruchika,Dhamarla Anand,Narayanan Sridharan R,et al.Numerical Investigation on the Effect of Vortex Generator on Axial Compressor Performance[R].ASME GT 2014-25329.
    [2]Diaa Ahmed M,El-Dosoky Mohammed F,AbdelHafez Omar E,et al.Second Flow Control on Axial Flow Compressor Cascade Using Vortex Generators[R].ASME IMECE 2014-37790.
    [3]Lin J C.Review of Research on Low-Profile Vortex Generators to Control Boundary-Layer Separation[J].Progress in Aerospace Sciences,2001,38(4-5):389-420.
    [4]Shan Ma,Wuli Chu,Haoguang Zhang,et al.Numerical Investigation on Effect of Compressor Performance in Single Rotor with Micro-Vortex Generator[R].ASMEGT 2017-63935.
    [5]Lin J C,Howard F G,Selby G V.Small Submerged Vortex Generators for Turbulent Flow Separation Control[J].Journal of Spacecraft&Rockets,1990,27(5):503-507.
    [6]Lin J C.Control of Turbulent Boundary-Layer Separation Using Micro-Vortex Generators[R].AIAA 1999-3404.
    [7]Rajendran Avinash Kumar,Shobhavathy M T,Kumar RAjith.CFD Analysis to Investigate the Effect of Vortex Generators on a Transonic Axial Flow Compressor Stage[R].ASME GTINDIA 2015-1313.
    [8]Diaa Ahmed M,El-Dosoky Mohammed F,AbdelHafez Omar E,et al.Second Flow Control on Axial Flow Compressor Cascade Using Vortex Generators[R].ASME IMECE 2014-37790.
    [9]Shan Ma,Wuli Chu,Haoguang Zhang,et al.Impact of Vortex Produced by a Novel Curve-Micro Vortex Generator on Secondary Flow in Compressor Cascade[R].ASME GT 2017-63948.
    [10]Pushpender Sharma,Santanu Ghoshy.A Novel Vortex Generator for Mitigation of Shock-Induced Separation[R].AIAA 2014-1246.
    [11]Pingping Chen,Weiyang Qiao,Karsten Liesner,et al.Effect of Segment Endwall Boundary Layer Suction on Compressor 3D Corner Separation[R].ASME GT 2015-42024.
    [12]Pingping Chen,Weiyang Qiao,Karsten Liesner,et al.Location Effect of Boundary Layer Suction on Compressor Hub-Corner Separation[R].ASME GT 2014-25043.
    [13]Jan Siemann,Ingolf Krenz,Joerg R Seume.Experimental Investigation of Suction in a Multi-Stage High-Speed Axial-Compressor[R].ASME GT 2016-56440.
    [14]孙士珺,陈绍文,王春雪,等.孔式抽吸对带间隙高负荷压气机性能的影响[J].推进技术,2014,35(9):1202-1208.(SUN Shi-jun,CHEN Shao-wen,WANGChun-xue,et al.Effects of Holes-Type Suction on Performance in a High-Load Compressor with a Clearance[J].Journal of Propulsion Technology,2014,35(9):1202-1208.)
    [15]Zhang Longxin,Wang Songtao.A Combination Application of Tandem Blade and Endwall Boundary Layer Suction in a Highly Loaded Aspirated Compressor Outlet Vane[J].Journal of Power&Energy,2017,231(2):129-143.
    [16]Song Yanping,Chen Fu,Yang Jun,et al.A Numerical Investigation of Boundary Layer Suction in Compound Lean Compressor Cascades[R].ASME GT 2005-68441.
    [17]Ding Jun,Chen Shaowen,Cai Le,et al.The Synergistic Effect Between Compound Lean and Suction on Aerodynamic Performance in Compressor Cascades[J].Journal of Aerospace Engineering,2017,30(2).
    [18]马姗,楚武利,张皓光,等.微型涡流发生器控制压气机叶栅二次流的数值研究[J].推进技术,2017,38(12):2641-2651.(MA Shan,CHU Wu-li,ZHANGHao-guang,et al.Numerical Investigation on Secondary Flow Control in Cascade with Micro-Vortex Generator[J].Journal of Propulsion Technology,2017,38(12):2641-2651.)
    [19]张燕峰.高载荷压气机端壁流动及其控制策略研究[D].西安:西北工业大学,2010.
    [20]Hergt A,Meyer R,Engel K.Experimental Investigation of Flow Control in Compressor Cascades[R].ASMEGT 2006-90415.
    [21]Xiangjun Li,Wuli Chu,Yanhui Wu.Numerical Investigation of Inlet Boundary Layer Skew in Axial-Flow Compressor Cascade and the Corresponding Non-Axisymmetric End Wall Profiling[J].Journal of Power&Energy,2014,228(6):638-656.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700