钾离子转运载体HAK/KUP/KT家族参与植物耐盐性的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress of HAK/KUP/KT potassium transporter family in plant response to salt stress
  • 作者:李学文 ; 游西龙 ; 王艳
  • 英文作者:Li Xue-Wen;You Xi-Long;Wang Yan;Xinjiang Key Laboratory of Biological Resources and Genetic Engineering,College of Life Science and Technology,Xinjiang University;
  • 关键词:HAK/KUP/KT钾离子转运载体家族 ; 耐盐功能 ; 分子机制
  • 英文关键词:Potassium transporter of HAK/KUP/KT;;Salt tolerance;;Molecular mechanism
  • 中文刊名:WZXY
  • 英文刊名:Plant Science Journal
  • 机构:新疆大学生命科学与技术学院新疆生物资源基因工程重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:植物科学学报
  • 年:2019
  • 期:v.37
  • 基金:新疆维吾尔自治区重点实验室开放课题(2017D04026)~~
  • 语种:中文;
  • 页:WZXY201901014
  • 页数:8
  • CN:01
  • ISSN:42-1817/Q
  • 分类号:105-112
摘要
钾可以通过多种方式参与植物的生长和发育,在植物缓解盐等非生物胁迫方面发挥重要作用。在植物中,HAK/KUP/KT是成员数目最多的一类高亲和钾转运蛋白家族,本文对该家族成员的分类、盐胁迫下钾的吸收、转运、生理功能和分子调控机制等方面的研究进行了综述,并对该转运体家族今后的研究方向进行了展望。
        Potassium is involved in plant growth and development in a variety of ways and also plays an important role in mitigating salt stress.HAK/KUP/KT is the largest family of potassium transporters in plants.We summarized its roles in potassium absorption,transportation,physiological function,and molecular mechanisms in response to salinity stress.Future development of the HAK/KUP/KT family is discussed.
引文
[1]Nabati J,Kafi M,Nezami A,Moghaddam PR,Ali M,Mehrjerdi MZ.Effect of salinity on biomass production and activities of some key enzymatic antioxidants in Kochia(Kochia scoparia)[J].Pak J Bot,2011,43(1):539-548.
    [2]Munns R,Tester M.Mechanisms of salinity tolerance[J].Annu Rev Plant Biol,2008,59(1):651-681.
    [3]Anschutz U,Becker D,Shabala S.Going beyond nutrition:regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment[J].J Plant Physiol,2014,171(9):670-687.
    [4]Chérel I,Lefoulon C,Boeglin M,Sentenac H.Molecular mechanisms involved in plant adaptation to low K+availability[J].J Exp Bot,2014,65(3):833-848.
    [5]Abbasi GH,Javaid A,Anwar-ul-Haq M,Ali S.Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids[J].Pak J Bot,2016,46(1):135-146.
    [6]Abbasi H,Jamil M,Haq A,Ali S,Ahmad R,et al.Salt stress manifestation on plants,mechanism of salt tolerance and potassium role in alleviating it:a review[J].Zemdirbyste,2016,103(2):229-238.
    [7]Epstein E.Dual pattern of ion absorption by plant cells and by plants[J].Nature,1966,212(5068):1324-1327.
    [8]Li WH,Xu GH,Alli A,Yu L.Plant HAK/KUP/KT K+transporters:function and regulation[J].Semin Cell Dev Biol,2018,74:133-141.
    [9]Chen ZH,Newman I,Zhou MX,Mendham N,Zhang G,Shabala S.Screening plants for salt tolerance by measuring K+flux:a case study for barley[J].Plant Cell Environ,2005,28(10):1230-1246.
    [10]Adams E,Shin R.Transport,signaling,and homeostasis of potassium and sodium in plants[J].J Integr Plant Biol,2014,56(3):231-249.
    [11]Tavakkoli E,Fatehi F,Coventry S,Rengasamy P,Mcdonald GK.Additive effects of Na+and Cl-ions on barley growth under salinity stress[J].J Exp Bot,2011,62(6):2189-2203.
    [12]Shabala S,Cuin TA.Potassium transport and plant salt tolerance[J].Physiol Plant,2008,133(4):651-669.
    [13]Rodrigo-moreno A,Andrés-colás N,Poschenrieder C,GunséB,Penarrubia L,Shabala S.Calcium-and potassium-permeable plasma membrane transporters are activated by copper in Arabidopsis root tips:linking copper transport with cytosolic hydroxyl radical production[J].Plant Cell Environ,2013,36(4):844-855.
    [14]Demidchik V,Cuin TA,Svistunenko D,Smith SJ,Miller AJ,et al.Arabidopsis root K+-efflux conductance activated by hydroxyl radicals:single-channel properties,genetic basis and involvement in stress-induced cell death[J].J Cell Sci,2010,123(9):1468-1479.
    [15]Rodrigo-moreno A,Poschenrieder C,Shabala S.Transition metals:a double edge sward in ROS generation and signaling[J].Plant Signal Behav,2013,8(3):e23421-e23425.
    [16]Shabala S,Pottosin I.Regulation of potassium transport in plants under hostile conditions:implications for abiotic and biotic stress tolerance[J].Physiol Plantarum,2014,151(3):257-279.
    [17]Véry AA,Nieves-Cordones M,Daly M,Khan I,Fizames C,Sentenac H.Molecular biology of K+,transport across the plant cell membrane:what do we learn from comparison between plant species[J].J Plant Physiol,2014,171(9):748-769.
    [18]Rubio F,Santa-María GE,Rodríguez-Navarro A.Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells[J].Physiol Plantarum,2000,109(1):34-43.
    [19]Ba1uelos MA,Garciadeblas B,Cubero B,RodríGuez-Navarro A.Inventory and functional characterization of the HAK potassium transporters of rice[J].Plant Physiol,2002,130(2):784-95.
    [20]Yang TY,Zhang S,Hu YB,Wu FC,Hu QD,et al.The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels[J].Plant Physiol,2014,166(2):945-959.
    [21]Horie T,Sugawara M,Okada T,Taira K,Kaothiennakayama P,et al.Rice sodium-insensitive potassium transpor-ter,OsHAK5,confers increased salt tolerance in tobacco BY2 cells[J].J Biosci Bioeng,2011,111(3):346-356.
    [22]Takahashi R,Nishio T,Ichizen N,Takano T.High-affinity K+transporter Pha HAK5 is expressed only in salt-sensitive reed plants and shows Na+permeability under Na Cl stress[J].Plant Cell Rep,2007,26(9):1673-1679.
    [23]Yang ZF,Gao QS,Sun CS,Li WJ,Gu SL,Xu CW.Molecular evolution and functional divergence of HAK potassium transporter gene family in rice(Oryza sativa L.)[J].J Genet Genomics,2009,36(3):161-172.
    [24]Kim EJ,Kwak JM,Uozumi N,Schroeder JI.At KUP1:an Arabidopsis gene encoding high-affinity potassium transport activity[J].Plant Cell,1998,10(1):51-62.
    [25]Hyun TK,Rim Y,Kim E,Kim JS.Genome-wide and molecular evolution analyses of the KT/HAK/KUP family in tomato(Solanum lycopersicum L.)[J].Genes Genom,2014,36(3):365-374.
    [26]Song ZZ,Ma RJ,Yu ML.Genome-wide analysis and identification of KT/HAK/KUP potassium transporter gene family in peach(Prunus persica)[J].Genet Mol Res,2015,14(1):774-787.
    [27]晁毛妮,温玉清,张晋玉,张志勇,董洁,于亚鑫.大豆KUP/HAK/KT钾转运体基因家族的鉴定与表达分析[J].西北植物学报,2017,37(2):239-241,244-249.Chao MN,Wen YQ,Zhang JY,Zhang ZY,Dong J,Yu YX.Identification and expression analysis of KUP/HAK/KT potassium transporter gene family in soybean(Glycine max(L.)Merr.)[J].Acta Botanica Boreali-Occidentalia Sinica,2017,37(2):239-241,244-249.
    [28]Li Y,Peng LR,Xie CY,Shi XQ,Dong CX,et al.Genome-wide identification,characterization,and expression analyses of the HAK/KUP/KT,potassium transporter gene family reveals their involvement in K+,deficient and abiotic stress responses in pear rootstock seedlings[J].Plant Growth Regul,2018,85(2):187-198.
    [29]Ou WJ,Mao X,Huang C,Tie WW,Yan Y,et al.Genome-wide identification and expression analysis of the KUPfamily under abiotic stress in cassava(Manihot esculenta Crantz)[J].Front Physiol,2018,9:17.
    [30]Rubio F,Alemán F,Nievescordones M,Martínez V.Differential regulation of the genes encoding the high-affinity K+transporters HAK5 of Thellungiella halophila and Arabidopsis thaliana in response to salinity[J].Environ Exp Bot,2009,65(2-3):263-269.
    [31]杨中敏,王艳.盐穗木钾转运蛋白基因HcKUP12的克隆及在盐胁迫下的表达分析[J].植物科学学报,2015,33(4):499-506.Yang ZM,Wang Y.Cloning of potassium transporter gene(HcKUP12)from Halostachys caspica and its expression profile under salt stress[J].Plant Science Journal,2015,33(4):499-506.
    [32]Ba1uelos MA,Garciadeblas B,Cubero B,RodríGuezNavarro A.Inventory and functional characterization of the HAK potassium transporters of rice[J].Plant Physiol,2002,130(2):784-95.
    [33]Chen G,Hu QD,Luo L,Yang TY,Zhang S,et al.Rice potassium transporter Os HAK1 is essential for maintaining potassium mediated growth and functions in salt tolerance over low and high potassium concentration ranges[J].Plant Cell Environ,2016,38(12):2747-2765.
    [34]Yang T,Zhang S,Hu YB,Wu FC,Hu QB,et al.The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels[J].Plant Physiol,2014,166(2):945-959.
    [35]Shen Y,Shen LK,Shen ZX,Jing W,Ge HL,et al.The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice[J].Plant Cell Environ,2015,38(12):2766-2779.
    [36]Qi Z,Hampton CR,Shin R,Barkla BJ,White PJ,Schachtman DP.The high affinity K+transporter At HAK5plays a physiological role in planta at very low K+concentrations and provides a caesium uptake pathway in Arabidopsis[J].J Exp Bot,2008,59(3):595-607.
    [37]Maathuis FJ.Physiological functions of mineral macronutrients[J].Curr Opin Plant Biol,2009,12(3):250-258.
    [38]Maathuis FJ.The role of monovalent cation transporters in plant responses to salinity[J].J Exp Bot,2006,57(5):1137-1147.
    [39]Takahashi R,Nishio T,Ichizen N,Takano T.High-affinity K+transporter Pha HAK5 is expressed only in salt-sensitive reed plants and shows Na+permeability under Na Cl stress[J].Plant Cell Rep,2007,26(9):1673-1679.
    [40]Liu JF,Zhang SL,Tang HL,Wu LZ,Dong LJ,et al.Overexpression of an Aeluropus littoralis Parl.potassium transporter gene,Al HAK1,in cotton enhances potassium uptake and salt tolerance[J].Euphytica,2015,203(1):197-209.
    [41]Ruiz-Lau N,Bojórquez-Quintal E,Benito B,EchevarríaMachado I,Sánchez-Cach LA,et al.Molecular cloning and functional analysis of a Na+-insensitive K+transporter of Capsicum chinense Jacq.[J].Front Plant Sci,2016,7:1980-1994.
    [42]Bacha H,Ródenas R,López-Gómez E,García-Legaz MF,Nieves-Cordones M,et al.High Ca2+reverts the repression of high-affinity K+uptake produced by Na+in Solanum lycopersycum L.(var.microtom)plants[J].J Plant Physiol,2015,180:72-79.
    [43]Wang Y,Wu WH.Potassium transport and signaling in higher plants[J].Annu Rev Plant Biol,2013,64(1):451-476.
    [44]Ma TL,Wu WH,Wang Y.Transcriptome analysis of rice root responses to potassium deficiency[J].BMC Plant Biol,2012,12(1):161-174.
    [45]Li L,Kim BG,Cheong YH,Pandey GK,Luan S.A Ca2+,signaling pathway regulates a K+,channel for low-K response in Arabidopsis[J].Proc Natl Acad Sci USA,2006,103(33):12625-12630.
    [46]Li J,Long Y,Qi GN,Li J,Xu ZJ,et al.The Os-AKT1channel is critical for K+uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex[J].Plant Cell,2014,26(8):3387-3402.
    [47]Liu LL,Ren HM,Chen LQ,Wang Y,Wu WH.A protein kinase CIPK9 interacts with calcium sensor CBL3 and regulates K+homeostasis under low-K+stress in Arabidopsis[J].Plant Physiol,2012,161(1):266-277.
    [48]Ragel P,Ródenas R,Garcíamartín E,Andrés Z,Villalta I,et al.CIPK23 regulates HAK5-mediated high-affinity K+uptake in Arabidopsis roots[J].Plant Physiol,2015,169(4):2863-2873.
    [49]Han M,Wu W,Wu WH,Wang Y.Potassium transporter KUP7 is involved in K+,acquisition and translocation in Arabidopsis,root under K+-limited conditions[J].Mol Plant,2016,9(3):437-446.
    [50]Horie T,Sugawara M,Okada T,Taira K,Kaothiennakayama P,et al.Rice sodium-insensitive potassium transpor-ter,OsHAK5,confers increased salt tolerance in tobacco BY2 cells[J].J Biosci Bioeng,2011,111(3):346-356.
    [51]Rubio F,Fon M,Ródenas R,Nieves-Cordones M,Alemán F,et al.A low K+signal is required for functional high-affinity K+uptake through HAK5 transporters[J].Physiol Plant,2014,152(3):558-570.
    [52]Meng S,Peng JS,He YN,Zhang GB,Yi HY,et al.Arabidopsis NRT1.5 mediates the suppression of nitrate starvation-induced leaf senescence by modulating foliar potassium level[J].Mol Plant,2016,9(3):461-470.
    [53]Min JK,Ruzicka D,Shin R,Schachtman DP.The Arabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions[J].Mol Plant,2012,5(5):1042-1057.
    [54]Laohavisit A,Shang Z,Rubio L,Cuin TA,Véry AA,et al.Arabidopsis annexin1 mediates the radical-activated plasma membrane Ca2+-and K+-permeable conductance in root cells[J].Plant Cell,2012,24(4):1522-1533.
    [55]Jung JY,Shin R,Schachtman DP.Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis[J].Plant Cell,2009,21(2):607-621.
    [56]Nam YJ,Tran LS,Kojima M,Sakakibara H,Nishiyama R,Shin R.Regulatory roles of cytokinins and cytokinin signaling in response to potassium deficiency in Arabidopsis[J].PLo S One,2012,7(10):e47797.
    [57]Shin R,Schachtman DP.Hydrogen peroxide mediates plant root cell response to nutrient deprivation[J].Proc Natl Acad Sci USA,2004,101(23):8827-8832.
    [58]Osakabe Y,Arinaga N,Umezawa T,Katsura S,Nagamachi K,et al.Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis[J].Plant Cell,2013,25(2):609-624.
    [59]Schachtman DP,Shin R.Nutrient sensing and signaling:NPKS[J].Annu Rev Plant Biol,2007,58(58):47-69.
    [60]Daras G,Rigas S,Tsitsekian D,Iacovides TA,Hatzopoulos P.Potassium transporter TRH1 subunits assemble regulating root-hair elongation autonomously from the cell fate determination pathway[J].Plant Sci,2015,231:131-137.
    [61]Kim MJ,Ciani S,Schachtman DP.A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency[J].Mol Plant,2010,3(2):420-427.
    [62]Hirabayashi J,Kawasaki H,Suzuki K,Kasai K.Identification and characterization of transcription factors regulating Arabidopsis HAK5[J].Plant Cell Physiol,2013,54(9):1478-1490.
    [63]Zhao S,Zhang ML,Ma TL,Wang Y.Phosphorylation of ARF2 relieves its repression of transcription of the K+transporter gene HAK5 in response to low potassium stress[J].Plant Cell,2016,28(12):3005-3019.
    [64]Liu LT,Zheng CH,Kuang BJ,Wei LQ,Yan LF,Wang T.Receptor-like kinase rupo interacts with potassium transporters to regulate pollen tube growth and integrity in rice[J].PLo S Genetics,2016,12(7):e1006085.
    [65]Santa-María GE,Oliferuk S,Moriconi JI.KT-HAK-KUPtransporters in major terrestrial photosynthetic organisms:a twenty years tale[J].J Plant Physiol,2018,226:77-90.
    [66]Daras G,Rigas S,Tsitsekian D,Iacovides TA,Hatzopoulos P.Potassium transporter TRH1 subunits assemble regulating root-hair elongation autonomously from the cell fate determination pathway[J].Plant Sci Nlm,2015,231:131-137.
    [67]Xia X,Fan X,Wei J,Feng H,Qu H,et al.Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport[J].J Exp Bot,2015,66(1):317-331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700