单晶锗纳米切削温度场分布及各向异性对切削温度的影响研究(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nano-cutting Temperature Field Distribution and the Influence of Anisotropy on Cutting Temperature of Single Crystal Germanium
  • 作者:罗良 ; 杨晓京 ; 刘宁 ; 耿瑞文
  • 英文作者:Luo Liang;Yang Xiaojing;Liu Ning;Geng Ruiwen;Kunming University of Science and Technology;
  • 关键词:单晶锗 ; 各向异性 ; 分子动力学 ; 切削温度 ; 切削力
  • 英文关键词:single crystal germanium;;anisotropy;;molecular dynamics;;cutting temperature;;cutting force
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:昆明理工大学;
  • 出版日期:2019-04-15
  • 出版单位:稀有金属材料与工程
  • 年:2019
  • 期:v.48;No.393
  • 基金:National Natural Science Foundation of China(51765027,51365021)
  • 语种:英文;
  • 页:COSE201904015
  • 页数:5
  • CN:04
  • ISSN:61-1154/TG
  • 分类号:106-110
摘要
为深入理解单晶锗纳米切削特性,提高纳米锗器件光学表面质量,首次采用三维分子动力学(MD)的方法研究了单晶锗纳米切削过程中工件原子的温度分布情况,研究了晶体的各向异性(100),(110),(111)晶面对切削温度的影响及切削温度对切削力的影响。结果表明,在切削过程中最高切削温度分布在切屑当中,达到了460 K。刀具的后刀面与已加工表面之间的区域也有较高的温度,在400 K以上。在3个不同的晶面中,(111)晶面的切削温度最高,(111)晶面的原子密度最大,即为单晶锗的密排面,释放出的能量最多。切削温度对切削力也有影响,切削温度越高,工件中原子受到的切削力越小。
        In order to understand the nano-cutting properties of single crystal germanium and improve the optical surface quality of nano-germanium devices, the three-dimensional molecular dynamics(MD) method was firstly applied to investigate the temperature distribution of the material atoms during the nano-cutting process of single crystal germanium. The anisotropy effect of Ge(100),(110) and(111) on the cutting temperature and the influence of cutting temperature on cutting force were investigated. The results show that the highest cutting temperature during the cutting process is distributed among the chips, reaching 460 K. There is also a high temperature region in the friction zone of the tool back face, and the highest temperature is above 400 K. Among the three different crystal planes, the highest cutting temperature exists on the surface of Ge(111) crystal. Atomic arrangement is the most intensive in Ge(111), namely, Ge(111) is the densely packed surface of the single crystal germanium, which releases the most energy. What's more, cutting temperature has also made an impact on the cutting force. As the cutting temperature increases, the cutting force of the material atoms is reduced.
引文
1 Zhu Ying,Zhang Yincheng,Qi Shunhe et al.Rare Metal Materials and Engineering[J],2016,45(4):897
    2 Zhu P Z,Hu Y Z,Ma T B et al.Applied Surface Science[J],2010256(23):7160
    3 Zhu Pengzhe,Hu Yuanzhong,Ma Tianbao et al.Tribol Lett[J],2011,41(1):41
    4 Wu Chengda,Jiang Wenxiang.Journal of Molecular Modeling[J],2018,24:253
    5 Redkov A V,Osipov A V,Kukushkin S A.Technical Physics Letters[J],2016,42(6):639
    6 Sharma A,Datta D,Balasubramaniam R.Computational Materials Science[J],2018,145:208
    7 Xu Feifei,Fang Fengzhou,Zhang Xiaodong.Computational Materials Science[J],2018,143:133
    8 Xu Feifei,Fang Fengzhou,Zhang Xiaodong.Applied Surface Science[J],2017,425:1020
    9 Chavoshi S Z,Goel S,Luo X C.Journal of Manufacturing Processes[J],2016,23:201
    10 Chavoshi S Z,Luo X C.Computational Materials Science[J],2016,113:1
    11 Chavoshi S Z,Luo X C.Materials Science&Engineering A[J],2016,654:400
    12 Wang Quanlong,Bai Qingshun,Chen Jiaxuan et al.Nanoscale Research Letters[J],2015,10:396
    13 Wang Quanlong,Bai Qingshun,Chen Jiaxuan et al.Applied Surface Science[J],2015,344:38
    14 Wang Quanlong,Bai Qingshun,Chen Jiaxuan et al.Applied Surface Science[J],2015,355:1153
    15 Chen Jiaxuan,Wang Quanlong,Liang Yingchun et al.Procedia Engineering[J],2012,29:3478
    16 Tersoff J.Phys Rev B[J],1989,39:5566
    17 Zhu P Z,Fang F Z.Appl Phys A[J],2012,108(2):415
    18 Lai Min,Zhang Xiaodong,Fang Fengzhou.Nanoscale Research Letters[J],2013,8:353
    19 Lai Min,Zhang Xiaodong,Fang Fengzhou.Nanoscale Research Letters[J],2013,8:13
    20 Yang Xiaojing,Liu Yanrong,Yang Xiaojiang et al.Transactions of the Chinese Society for Agricultural Machinery[J],2014,5:322

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700