Numerical studies of reverse flows controlled by undulating leading edge
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical studies of reverse flows controlled by undulating leading edge
  • 作者:Biao ; Wang ; Jian ; Liu ; QiBing ; Li ; YunJun ; Yang ; ZhiXiang ; Xiao
  • 英文作者:Biao Wang;Jian Liu;QiBing Li;YunJun Yang;ZhiXiang Xiao;School of Aerospace, Tsinghua University;China Academy of Aerospace Aerodynamics;
  • 英文关键词:IDDES method;;reverse flow;;flow control;;undulating leading edge
  • 中文刊名:JGXG
  • 英文刊名:中国科学:物理学 力学 天文学(英文版)
  • 机构:School of Aerospace, Tsinghua University;China Academy of Aerospace Aerodynamics;
  • 出版日期:2019-02-15 07:03
  • 出版单位:Science China(Physics,Mechanics & Astronomy)
  • 年:2019
  • 期:v.62
  • 基金:supported by the National Natural Science Foundation of China(Grant Nos.91852113,11772174,and 11672158);; the National Key Research and Development Program of China(Grant No.2016YFA0401200)
  • 语种:英文;
  • 页:JGXG201907012
  • 页数:13
  • CN:07
  • ISSN:11-5849/N
  • 分类号:95-107
摘要
The improved delayed detached-eddy simulation(IDDES) method is used to simulate the reverse flows past an NACA0012 airfoil at medium(10°) and large(30°) angles of attack. The numerical results of the baseline configuration are compared with the available measurements. The effects of the undulating leading edge with four different amplitudes are compared and analyzed at angle of attack of 10°. Based on these analyses, the amplitude of A/C=0.04 yields the best performance. Compared with the uncontrolled case, the performances of the undulating leading edge are greatly improved with reducing of the aerodynamic fluctuations. Furthermore, the mechanisms of performance are explored by comparing the local flow structures near the undulations.
        The improved delayed detached-eddy simulation(IDDES) method is used to simulate the reverse flows past an NACA0012 airfoil at medium(10°) and large(30°) angles of attack. The numerical results of the baseline configuration are compared with the available measurements. The effects of the undulating leading edge with four different amplitudes are compared and analyzed at angle of attack of 10°. Based on these analyses, the amplitude of A/C=0.04 yields the best performance. Compared with the uncontrolled case, the performances of the undulating leading edge are greatly improved with reducing of the aerodynamic fluctuations. Furthermore, the mechanisms of performance are explored by comparing the local flow structures near the undulations.
引文
1 A.H.Lind,and A.R.Jones,J.Fluids Struct.63,259(2016).
    2 A.H.Lind,L.R.Smith,J.I.Milluzzo,and A.R.Jones,J.Aircraft 53,1248(2016).
    3 A.H.Lind,and A.R.Jones,AIAA J.53,2621(2015).
    4 A.H.Lind,J.N.Lefebvre,and A.R.Jones,AIAA J.52,2751(2014).
    5 J.Hodara,A.H.Lind,A.R.Jones,and M.J.Smith,J Am Helicopter Soc.61,1(2016).
    6 M.J.Smith,N.D.Liggett,and B.C.G.Koukol,J.Aircraft 48,2012(2011).
    7 C.J.Clifford,A.Singhal,and M.Samimy,“A Study of physics and control of a flow over an airfoil in fully-reversed condition”,AIAApaper No.2014-1265,2014.
    8 F.E.Fish,and J.M.Battle,J.Morphol.225,51(1995).
    9 M.Zhao,M.Zhang,and J.Xu,Eng.Appl.Comput.Fluid Mech.11,193(2017).
    10 A.Skillen,A.Revell,A.Pinelli,U.Piomelli,and J.Favier,AIAA J.53,464(2014).
    11 R.Pérez-Torró,and J.W.Kim,J.Fluid Mech.813,23(2017).
    12 D.Custodio,C.W.Henoch,and H.Johari,AIAA J.53,1878(2015).
    13 N.Rostamzadeh,R.M.Kelso,and B.Dally,Theor.Comput.Fluid Dyn.31,1(2016).
    14 F.Tong,W.Qiao,K.Xu,L.Wang,W.Chen,and X.Wang,J.Sound Vib.419,200(2018).
    15 M.D.Bolzon,R.M.Kelso,and M.Arjomandi,J.Aerosp.Eng.29,04015013(2015).
    16 N.Rostamzadeh,K.L.Hansen,R.M.Kelso,and B.B.Dally,Phys.Fluids 26,107101(2014).
    17 K.L.Hansen,N.Rostamzadeh,R.M.Kelso,and B.B.Dally,J.Fluid Mech.788,730(2016).
    18 M.L.Shur,P.R.Spalart,M.K.Strelets,and A.K.Travin,Int.J.Heat Fluid Flow 29,1638(2008).
    19 Y.Q.Wang,and C.Q.Liu,Sci.China-Phys.Mech.Astron.60,114712(2017).
    20 H.Zh,and S.Fu,Sci.China-Phys.Mech.Astron.60,104712(2017).
    21 Z.Jiao,and S.Fu,Sci.China-Phys.Mech.Astron.61,114711(2018).
    22 S.Y.Chen,Y.C.Chen,Z.H.Xia,K.Qu,Y.P.Shi,Z.L.Xiao,Q.H.Liu,Q.D.Cai,F.Liu,C.Lee,R.K.Zhang,and J.S.Cai,Sci.ChinaPhys.Mech.Astron.56,270(2013).
    23 Y.F.Zhang,H.X.Chen,and S.Fu,Sci.China-Phys.Mech.Astron.55,828(2012).
    24 Q.Li,D.Sun,and H.X.Zhang,Sci.China-Phys.Mech.Astron.56,1062(2013).
    25 J.B.Huang,Z.X.Xiao,J.Liu,and S.Fu,Sci.China-Phys.Mech.Astron.55,260(2012).
    26 Z.Xiao,J.Liu,J.Huang,and S.Fu,AIAA J.50,1119(2012).
    27 Z.X.Xiao,J.Liu,J.B.Huang,and S.Fu,“Comparisons of three improved DES methods on unsteady flows past tandem cylinders”,AIAA Paper No.2012-0231,2012.
    28 Z.X.Xiao,and K.Y.Luo,Acta Mech.Sin.31,799(2015).
    29 Z.Xiao,J.Liu,K.Luo,J.Huang,and S.Fu,AIAA J.51,107(2013).
    30 F.R.Menter,AIAA J.32,1598(1994).
    31 A.Pope,The forces and pressures over an NACA0015 airfoil through180 degrees angle of attack,Georgia Technical Report(Daniel Guggenheim School of Aeronautics,1947).
    32 H.Johari,C.W.Henoch,D.Custodio,and A.Levshin,AIAA J.45,2634(2007).
    33 K.L.Hansen,R.M.Kelso,and B.B.Dally,AIAA J.49,185(2011).
    34 P.Chaitanya,P.Joseph,S.Narayanan,C.Vanderwel,J.Turner,J.W.Kim,and B.Ganapathisubramani,J.Fluid Mech.818,435(2017).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700