Two selenium tolerant Lysinibacillus sp. strains are capable of reducing selenite to elemental Se efficiently under aerobic conditions
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Two selenium tolerant Lysinibacillus sp. strains are capable of reducing selenite to elemental Se efficiently under aerobic conditions
  • 作者:Ju ; Zhang ; Yue ; Wang ; Zongyuan ; Shao ; Jing ; Li ; Shuting ; Zan ; Shoubiao ; Zhou ; Ruyi ; Yang
  • 英文作者:Ju Zhang;Yue Wang;Zongyuan Shao;Jing Li;Shuting Zan;Shoubiao Zhou;Ruyi Yang;College of Environmental Science and Engineering, Anhui Normal University;Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University;Institute of Functional Food, Anhui Normal University;
  • 英文关键词:Selenium tolerant bacteria;;Selenite reduction;;Nanoparticles;;Reduction rate;;Reduction efficiency;;Sources
  • 中文刊名:HJKB
  • 英文刊名:环境科学学报(英文版)
  • 机构:College of Environmental Science and Engineering, Anhui Normal University;Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University;Institute of Functional Food, Anhui Normal University;
  • 出版日期:2018-12-26
  • 出版单位:Journal of Environmental Sciences
  • 年:2019
  • 期:v.77
  • 基金:supported by the National Natural Science Foundation of China(No.41771355);; the Anhui Provincial Natural Science Foundation(No.1508085SMC211);; the Key Project of Outstanding Young Talent Support Program in Universities of Anhui Province(No.gxyqZD2016025)
  • 语种:英文;
  • 页:HJKB201903023
  • 页数:12
  • CN:03
  • ISSN:11-2629/X
  • 分类号:241-252
摘要
Microbes play important roles in the transport and transformation of selenium(Se) in the environment, thereby influencing plant resistance to Se and Se accumulation in plant. The objectives are to characterize the bacteria with high Se tolerance and reduction capacity and explore the significance of microbial origins on their Se tolerance, reduction rate and efficiency. Two bacterial strains were isolated from a naturally occurred Se-rich soil at tea orchard in southern Anhui Province, China. The reduction kinetics of selenite was investigated and the reducing product was characterized using scanning electron microscopy and transmission electron microscopy-energy dispersive spectroscopy. The bacteria were identified as Lysinibacillus xylanilyticus and Lysinibacillus macrolides,respectively, using morphological, physiological and molecular methods. The results showed that the minimal inhibitory concentrations(MICs) of selenite for L. xylanilyticus and L. macrolides were 120 and 220 mmol/L, respectively, while MICs of selenate for L.xylanilyticus and L. macrolides were 800 and 700 mmol/L, respectively. Both strains aerobically reduced selenite with an initial concentration of 1.0 mmol/L to elemental Se nanoparticles(SeNPs) completely within 36 hr. Biogenic SeNPs were observed both inside and outside the cells suggesting either an intra-or extracellular reduction process. Our study implied that the microbes from Se-rich environments were more tolerant to Se and generally quicker and more efficient than those from Se-free habitats in the reduction of Se oxyanions. The bacterial strains with high Se reduction capacity and the biological synthesized Se NPs would have potential applications in agriculture, food, environment and medicine.
        Microbes play important roles in the transport and transformation of selenium(Se) in the environment, thereby influencing plant resistance to Se and Se accumulation in plant. The objectives are to characterize the bacteria with high Se tolerance and reduction capacity and explore the significance of microbial origins on their Se tolerance, reduction rate and efficiency. Two bacterial strains were isolated from a naturally occurred Se-rich soil at tea orchard in southern Anhui Province, China. The reduction kinetics of selenite was investigated and the reducing product was characterized using scanning electron microscopy and transmission electron microscopy-energy dispersive spectroscopy. The bacteria were identified as Lysinibacillus xylanilyticus and Lysinibacillus macrolides,respectively, using morphological, physiological and molecular methods. The results showed that the minimal inhibitory concentrations(MICs) of selenite for L. xylanilyticus and L. macrolides were 120 and 220 mmol/L, respectively, while MICs of selenate for L.xylanilyticus and L. macrolides were 800 and 700 mmol/L, respectively. Both strains aerobically reduced selenite with an initial concentration of 1.0 mmol/L to elemental Se nanoparticles(SeNPs) completely within 36 hr. Biogenic SeNPs were observed both inside and outside the cells suggesting either an intra-or extracellular reduction process. Our study implied that the microbes from Se-rich environments were more tolerant to Se and generally quicker and more efficient than those from Se-free habitats in the reduction of Se oxyanions. The bacterial strains with high Se reduction capacity and the biological synthesized Se NPs would have potential applications in agriculture, food, environment and medicine.
引文
Antonioli,P.,Lampis,S.,Chesini,I.,Vallini,G.,Rinalducci,S.,Zolla,L.,et al.,2007.Stenotrophomonas maltophilia SeITE02,a new bacteria strain suitable for bioremediation of selenite-contaminated environmental matrices.Appl.Environ.Microbiol.73(21),6854-6863.
    Avenda?o,R.,Chaves,N.,Fuentes,P.,Sánchez,E.,Jiménez,J.I.,Chavarría,M.,2016.Production of selenium nanoparticles in Pseudomonas putida KT2440.Sci.Rep.6,37155.
    Ayano,H.,Miyake,M.,Terasawa,K.,Kuroda,M.,Soda,S.,Sakaguchi,T.,et al.,2014.Isolation of a selenite-reducing and cadmium-resistant bacterium Pseudomonas sp.strain RB for microbial synthesis of CdSe nanoparticles.J.Biosci.Bioeng.117(5),576-581.
    Bao,P.,Xiao,K.Q.,Wang,H.J.,Xu,H.,Xu,P.P.,Jia,Y.,et al.,2016.Characterization and potential applications of a selenium nanoparticle producing and nitrate reducing bacterium Baccilus oryziterrae sp.nov.Sci.Rep.6,34054.
    Bettinelli,M.,Beone,G.M.,Spezia,S.,Baffi,C.,2000.Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis.Anal.Chim.Acta 424(2),289-296.
    Combs,G.F.,2001.Selenium in global food systems.Br.J.Nutr.85(5),517-547.
    Compilation Committee of the Atlas of Endemic Diseases and Their Environments in the People's Republic of China,1989.The atlas of endemic diseases and their environments in the People's Republic of China.Science Press,Beijing.
    Coorevits,A.,Dinsdale,A.E.,Heyrman,J.,Schumann,P.,Van Landschoot,A.,Logan,N.A.,et al.,2012.Lysinibaccillus macroides sp nov.,nom.rev.Int.J.Syst.Evol.Microbiol.62,1121-1127.
    Debieux,C.M.,Dridge,E.J.,Mueller,C.M.,Splatt,P.,Paszkiewicz,K.,Knight,I.,et al.,2011.A bacterial process for selenium nanosphere assembly.Proc.Natl.Acad.Sci.U.S.A.108(33),13480-13485.
    Dhanjal,S.,Cameotra,S.S.,2010.Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil.Microb.Cell Factories 9(1),52.
    Ding,Y.Z.,Wang,R.G.,Guo,J.K.,Wu,F.C.,Xu,Y.M.,Feng,R.W.,2015.The effect of selenium on the subcellular distribution of antimony to regulate the toxicity of antimony in paddy soil.Environ.Sci.Pollut.Res.22(7),5111-5123.
    Durán,P.,Acu?a,J.J.,Gianfreda,L.,Azcón,R.,Funes-Collado,V.,Mora,M.L.,2015.Endophytic selenobacteria as new inocula for selenium biofortification.Appl.Soil Ecol.96,319-326.
    Dwivedi,S.,Alkhedhairy,A.A.,Ahamed,M.,Musarrat,J.,2013.Biomimetic synthesis of selenium nanospheres by bacterial strain JS-11 and its role as a biosensor for nanotoxicity assessment:a novel Se-bioassay.PLoS One 8,e57404.
    Espinosa-Ortiz,E.J.,Shakya,M.,Jain,R.,Rene,E.R.,van Hullebusch,E.D.,Lens,P.N.L.,2016.Sorption of zinc onto elemental selenium nanoparticles immobilized in Phanerochaete chrysosporiumpellets.Environ.Sci.Pollut.Res.23(21),21619-21630.
    Gao,J.,Liu,Y.,Huang,Y.,Lin,Z.Q.,Ba?uelos,G.S.,Lam,M.H.W.,et al.,2011.Daily selenium intake in a moderate selenium deficiency area of Suzhou,China.Food Chem.126(3),1088-1093.
    Ghosh,A.,Mohod,A.M.,Paknikar,K.M.,Jain,R.K.,2008.Isolation and characterization of selenite-and selenate-tolerant microorganisms from selenium-contaminated sites.World J.Microbiol.Biotechnol.24(6),1607-1611.
    Güven,K.,Mutlu,M.B.,?irpan,C.,Kutlu,H.M.,2013.Isolation and identification of selenite reducing archaea from Tuz(salt)lake in Turkey.J.Basic Microbiol.53(5),397-401.
    Huang,X.Q.,Chen,X.,Chen,Q.C.,Yu,Q.Q.,Sun,D.D.,Liu,J.,2016.Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs.Acta Biomater.30,397-407.
    Ike,M.,Takahashi,K.,Fujita,T.,Kashiwa,M.,Fujita,M.,2000.Selenate reduction by bacteria isolated from aquatic environment free from selenium contamination.Water Res.34(11),3019-3025.
    IUSS Working Group WRB,2015.World Reference Base for soil resources 2014.Update.2015 International soil classification system for naming soils and creating legends for soil maps.World soil resources reports no.106.FAO,Rome.
    Jiang,H.D.,He,X.H.,Zhang,L.X.,Tao,Y.,Wang,X.M.,Gao,P.,et al.,2010.Reduction of selenite to elemental red selenium under aerobic condition by Pseudomonas alcaliphila MBR.Acta Microbiol Sin.50(10),1347-1352.
    Kashiwa,M.,Nishimoto,S.,Takahashi,K.,Ike,M.,Fujita,M.,2000.Factors affecting soluble selenium removal by a selenate-reducing bacterium Bacillus sp.SF-1.J.Biosci.Bioeng.89(6),528-533.
    Kessi,J.,2006.Enzymic systems proposed to be involved in the dissimilatory reduction of selenite in the purple non-sulfur bacteria Rhodospirillum rubrum and Rhodobacter capsulatus.Microbiol.Soc.J.152,731-743.
    Kessi,J.,Hanselmann,K.W.,2004.Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli.J.Biol.Chem.279(49),50662-50669.
    Khoei,N.S.,Lampis,S.,Zonaro,E.,Yrj?l?,K.,Bernardi,P.,Vallini,G.,2017.Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum.New Biotechnol.34,1-11.
    Kumar,S.,Nei,M.,Dudley,J.,Tamura,K.,2008.MEGA:a biologistcentric software for evolutionary analysis of DNA and protein sequences.Brief.Bioinform.9(4),299-306.
    Kumar,A.,Singh,R.P.,Singh,P.K.,Awasthi,S.,Chakrabarty,D.,Trivedi,P.K.,et al.,2014.Selenium ameliorates arsenic induced oxidative stress through modulation of antioxidant enzymes and thiols in rice(Oryza sativa L.).Ecotoxicology 23(7),1153-1163.
    Lampis,S.,Zonaro,E.,Bertolini,C.,Bernardi,P.,Butler,C.S.,Vallini,G.,2014.Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions.Microb.Cell Factories 13,35.
    Lampis,S.,Zonaro,E.,Bertolini,C.,Cecconi,D.,Monti,F.,Micaroni,M.,et al.,2017.Selenite biotransformation and detoxification by Stenotrophomonas maltophilia SeITE02:novel clues on the route to bacterial biogenesis of selenium nanoparticles.J.Hazard.Mater.324,3-14.
    Lane,D.J.,1991.16S/23S rRNA sequencing.In:Stackebrandt,E.,Goodfellow,M.(Eds.),Nucleic acid techniques in bacterial systematics.John Wiley and Sons,New York,pp.115-175.
    Levander,O.A.,Burk,R.F.,2006.Uptake of human dietary standards for selenium.In:Hatfield,D.L.,Berry,M.J.,Gladyshev,V.N.(Eds.),Selenium:its molecular biology and role in human health,2nd ed.Springer,New York,pp.399-410.
    Li,B.Z.,Liu,N.,Li,Y.Q.,Jing,W.X.,Fan,J.H.,Li,D.,et al.,2014.Reduction of selenite to red elemental selenium by Rhodopseudomonas palustris strain N.PLoS One 9,e95955.
    Lindblom,S.D.,Fakra,S.C.,Landon,J.,Schulz,P.,Tracy,B.,PilonSmits,E.A.H.,2014.Inoculation of selenium hyperaccumulator Stanleya pinnata and related non-accumulator Stanleya elata with hyperaccumulator rhizosphere fungi-investigation of effects on Se accumulation and speciation.Physiol.Plant.150(1),107-118.
    Lu,R.K.,2000.Analysis method on soil agricultural chemistry.China Agricultural Science And Technology Press,Beijing.
    Mal,J.,Veneman,W.J.,Nancharaiah,Y.V.,van Hullebusch,E.D.,Peijnenburg,W.J.G.M.,Vijver,M.G.,et al.,2017.A comparison of fate and toxicity of selenite,biogenically,and chemically synthesized selenium nanoparticles to zebrafish(Danio rerio)embryogenesis.Nanotoxicology 11(1),87-97.
    Nagy,G.,Benko,I.,Kiraly,G.,Voros,O.,Tanczos,B.,Sztrik,A.,et al.,2015.Cellular and nephrotoxicity of selenium species.J.Trace Elem.Med.Biol.30,160-170.
    Nancharaiah,Y.V.,Lens,P.N.L.,2015.Ecology and biotechnology of selenium-respiring bacteria.Microbiol.Mol.Biol.Rev.79(1),61-80.
    Nguyen,V.K.,Park,Y.,Yu,J.,Lee,T.,2016.Microbial selenite reduction with organic carbon and electrode as sole electron donor by a bacterium isolated from domestic wastewater.Bioresour.Technol.212,182-189.
    Olsen,S.R.,Sommers,L.E.,1982.Phosphorus.In:Page,A.L.,Miller,R.H.,Keeney,D.R.(Eds.),Methods of soil analysis:chemical and microbiological properties,2nd ed.American Society of Agronomy,Inc.,Wisconsin,p.1159.
    Oremland,R.S.,Herbel,M.J.,Blum,J.S.,Langley,S.,Beveridge,T.J.,Ajayan,P.M.,et al.,2004.Structural and spectral features of selenium nanospheres produced by se respiring bacteria.Appl.Environ.Microbiol.70(1),52-60.
    Peng,Z.Q.,Fan,J.,Xiang,D.E.,Shi,H.L.,Xiang,B.K.,Zuo,M.,2012.Isolation,screening,identification of three strains with high Se tolerance.Stud.Trace Elem.Health 29,4-6.
    Peng,T.,Lin,J.,Xu,Y.Z.,Zhang,Y.,2016.Comparative genomics reveals new evolutionary and ecological patterns of selenium utilization in bacteria.ISME J.10(8),2048-2059.
    Qin,H.B.,Zhu,J.M.,Su,H.,2012.Selenium fractions in organic matter from Se-rich soils and weathered stone coal in selenosis areas of China.Chemosphere 86(6),626-633.
    Rathgeber,C.,Yurkova,N.,Stackebrandt,E.,Beatty,J.T.,Yurkov,V.,2012.Isolation of tellurite-and selenite-resistant bacteria from hydrothermal vents of Juan De Fuca Ridge in the Pacific Ocean.Appl.Environ.Microbiol.68(9),4613-4622.
    Rayman,M.P.,2000.The importance of selenium to human health.Lancet 356,233-241.
    Srivastava,P.,Kowshik,M.,2016.Anti-neoplastic selenium nanoparticles from Idiomarina sp.PR58-8.Enzym.Microb.Technol.95,192-200.
    Staicu,L.C.,Ackerson,C.J.,Cornelis,P.,Ye,L.,Berendsen,R.L.,Hunter,W.J.,et al.,2015.Pseudomonas moraviensis subsp.stanleyae,a bacterial endophyte of hyperaccumulator Stanleya pinnata,is capable of efficient selenite reduction to elemental selenium under aerobic conditions.J.Appl.Microbiol.119,400-410.
    Stone,R.,2009.A medical mystery in middle China.Science 324(5933),1378-1381.
    Tan,Y.Q.,Yao,R.,Wang,R.,Wang,D.,Wang,G.J.,Zheng,S.X.,2016.Reduction of selenite to se(0)nanoparticles by filamentous bacterium Streptomyces sp.ES2-5 isolated from a selenium mining soil.Microb.Cell Factories 15,157.
    Tang,Y.N.,Werth,C.J.,Sanford,R.A.,Singh,R.,Michelson,K.,Nobu,M.,et al.,2015.Immobilization of selenite via two parallel pathways during in situ bioremediation.Environ.Sci.Technol.49(7),4543-4550.
    Wan,Y.N.,Yu,Y.,Wang,Q.,Qiao,Y.H.,Li,H.F.,2016.Cadmium uptake dynamics and translocation in rice seedling:influence of different forms of selenium.Ecotoxicol.Environ.Saf.133,127-134.
    Wang,T.T.,Yang,L.B.,Zhang,B.C.,Liu,J.H.,2010.Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2biosensor.Colloids Surf.B 80(1),94-102.
    Wang,D.,Zhu,F.Q.,Zhu,X.L.,Zheng,S.X.,Wang,R.,Wang,G.J.,2015.Draft genomic sequence of a selenite-reducing bacterium,Paenirhodobacter enshiensis DW2-9T.Stand.Genomic Sci.10,38.
    Wang,Y.J.,Dang,F.,Evans,R.D.,Zhong,H.,Zhao,J.T.,Zhou,D.M.,2016.Mechanistic understanding of MeHg-Se antagonism in soilrice systems:the key role of antagonism in soil.Sci.Rep.6,19477.
    Wang,X.N.,Zhang,D.Y.,Pan,X.L.,Lee,D.J.,Al-Misned,F.A.,Mortuza,M.G.,et al.,2017.Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil.Chemosphere 170,266-273.
    Winkel,L.H.E.,Johnson,C.A.,Lenz,M.,Grundl,T.,Leupin,O.X.,Amini,M.,et al.,2012.Environmental selenium research:from microscopic processes to global understanding.Environ.Sci.Technol.46(2),571-579.
    Winkel,L.H.E.,Vriens,B.,Jones,G.D.,Schneider,L.S.,Pilon-Smits,E.,Ba?uelos,G.S.,2015.Selenium cycling across soil-plantatmosphere interfaces:a critical review.Nutrients 7(6),4199-4239.
    Xing,K.,Zhou,S.B.,Wu,X.G.,Zhu,Y.Y.,Kong,J.J.,Shao,T.,et al.,2015.Concentrations and characteristics of selenium in soil samples from Dashan region,a selenium-enriched area in China.Soil Sci.Plant Nutr.61(6),889-897.
    Yang,S.I.,George,G.N.,Lawrence,J.R.,Kaminskyj,S.G.W.,Dynes,J.J.,Lai,B.,et al.,2016.Multispecies biofilms transform selenium oxyanions into elemental selenium particles:studies using combined synchrotron X-ray fluorescence imaging and scanning transmission X-ray microscopy.Environ.Sci.Technol.50(19),10343-10350.
    Yuan,L.X.,Zhu,Y.Y.,Lin,Z.Q.,Ba?uelos,G.,Li,W.,Yin,X.B.,2013.A novel selenocystine-accumulating plant in selenium-mine drainage area in Enshi,China.PLoS One 8,e65615.
    Zheng,S.X.,Su,J.,Wang,L.,Yao,R.,Wang,D.,Deng,Y.J.,et al.,2014.Selenite reduction by the obligate aerobic bacterium Comamonas testosteroni S44 isolated from a metal-contaminated soil.BMC Microbiol.14,204.
    Zhou,F.Z.,Xie,Y.Y.,Zhao,T.,Tian,M.Y.,2013.Screening,seenriching condition optimization,and identification of selenium-enriched microbe.China Brewing 32(8),103-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700