3D-printed surface promoting osteogenic differentiation and angiogenetic factor expression of BMSCs on Ti6Al4V implants and early osseointegration in vivo
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:3D-printed surface promoting osteogenic differentiation and angiogenetic factor expression of BMSCs on Ti6Al4V implants and early osseointegration in vivo
  • 作者:Jinkai ; Zhang ; Wenhui ; Zhou ; Hui ; Wang ; Kaili ; Lin ; Fengshan ; Chen
  • 英文作者:Jinkai Zhang;Wenhui Zhou;Hui Wang;Kaili Lin;Fengshan Chen;Department of Orthodontics,School & Hospital of Stomatology,Tongji University;Shanghai Engineering Research Center of Tooth Restoration and Regeneration;Department of Oral & Cranio-Maxillofacial Surgery,Shanghai Ninth People's Hospital,Shanghai Jiao Tong University School of Medicine,Shanghai Key Laboratory of Stomatology,Shanghai Research Institute of Stomatology;
  • 英文关键词:Three-dimensional printing;;Titanium alloy;;BMSCs;;Osteogenesis;;Osseointegration
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:Department of Orthodontics, School & Hospital of Stomatology, Tongji University;Shanghai Engineering Research Center of Tooth Restoration and Regeneration;Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology;
  • 出版日期:2019-02-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:support of the National Key R&D Program of China (No. 2017YFB1104100);; National Natural Science Foundation of China (No. 81371129, 81670973);; the Science and Technology Commission of Shanghai (No. 17410710500, 16DZ0503800, 17510710800);; the Fund of Shanghai Municipal Commission of Health and Family Planning (No. 201540369)
  • 语种:英文;
  • 页:CLKJ201902011
  • 页数:8
  • CN:02
  • ISSN:21-1315/TG
  • 分类号:110-117
摘要
Three-dimensional-printed(3 D-P) titanium implants display many advantages, such as design flexibility,higher efficiency, the capability to easily construct complex or customized structures, etc., and is believed to potentially replace traditional implants. However, the biological performance of the 3 D-P titanium surface has not been investigated systematically. Herein, we analyzed the surface characteristics of 3 D-P Ti6 Al4 V implants and evaluated the biological responses of bone marrow derived mesenchymal stromal cells(BMSCs) to the 3 D-P surface in vitro. Moreover, after implantation into the rat femoral condyle for3 and 6 weeks, the osseointegration performance was evaluated. The results showed the 3 D-P Ti6 Al4 V implant presented distinct fluctuant macroscale rough surface and relatively better hydrophilicity which enhanced the adhesion, proliferation, osteogenic differentiation and angiogenetic factor expression of BMSCs. Moreover, the in vivo osseointegration performance was also better than that of the control group at the early stage. The present study suggested the 3 D-P titanium alloy is a promising candidate to be used as implant material.
        Three-dimensional-printed(3 D-P) titanium implants display many advantages, such as design flexibility,higher efficiency, the capability to easily construct complex or customized structures, etc., and is believed to potentially replace traditional implants. However, the biological performance of the 3 D-P titanium surface has not been investigated systematically. Herein, we analyzed the surface characteristics of 3 D-P Ti6 Al4 V implants and evaluated the biological responses of bone marrow derived mesenchymal stromal cells(BMSCs) to the 3 D-P surface in vitro. Moreover, after implantation into the rat femoral condyle for3 and 6 weeks, the osseointegration performance was evaluated. The results showed the 3 D-P Ti6 Al4 V implant presented distinct fluctuant macroscale rough surface and relatively better hydrophilicity which enhanced the adhesion, proliferation, osteogenic differentiation and angiogenetic factor expression of BMSCs. Moreover, the in vivo osseointegration performance was also better than that of the control group at the early stage. The present study suggested the 3 D-P titanium alloy is a promising candidate to be used as implant material.
引文
[1] Y.J. Park, Y.H. Song, J.H. An, H.J. Song, K.J. Anusavice, J. Dent. 41(2013)1251–1258.
    [2] A. Sidambe, Materials 7(2014)8168–8188.
    [3] A.A. Zadpoor, J. Malda, Ann. Biomed. Eng. 45(2017)1–11.
    [4] J. Li, Y. Hsu, E. Luo, A. Khadka, J. Hu, Aesthetic Plast. Surg. 35(2011)636–640.
    [5] G. Rasperini, S.P. Pilipchuk, C.L. Flanagan, C.H. Park, G. Pagni, S.J. Hollister,W.V. Giannobile, J. Dent. Res. 94(2015)153S–157S.
    [6] W. Li, K. Yang, S. Yin, X. Yang, Y. Xu, R. Lupoi, J. Mater. Sci. Technol. 34(2017)440–457.
    [7] P.G. Coelho, J.M. Granjeiro, G.E. Romanos, M. Suzuki, N.R. Silva, G. Cardaropoli,V.P. Thompson, J.E. Lemons, J. Biomed. Mater. Res. B Appl. Biomater. 88(2009)579–596.
    [8] K.L. Lin, L.G. Xia, J.B. Gan, Z.Y. Zhang, H. Chen, X.Q. Jiang, J. Chang, ACS Appl.Mater. Interfaces 5(2013)8008–8017.
    [9] K.L. Lin, C.T. Wu, J. Chang, Acta Biomater. 10(2014)4071–4102.
    [10] L. Le Guehennec, A. Soueidan, P. Layrolle, Y. Amouriq, Dent. Mater. 23(2007)844–854.
    [11] G. Tan, K. Ouyang, H. Wang, L. Zhou, X. Wang, Y. Liu, L. Zhang, C. Ning, J. Mater.Sci. Technol. 32(2016)956–965.
    [12] J. Abdel-Haq, C.Z. Karabuda, V. Arisan, Z. Mutlu, M. Kurkcu, Clin. Oral Implants Res. 22(2011)265–274.
    [13] M. Roccuzzo, M. Aglietta, M. Bunino, L. Bonino, Clin. Oral Implants Res. 19(2008)148–152.
    [14] S. Amin Yavari, J. van der Stok, Y.C. Chai, R. Wauthle, Z. Tahmasebi Birgani, P.Habibovic, M. Mulier, J. Schrooten, H. Weinans, A.A. Zadpoor, Biomaterials 35(2014)6172–6181.
    [15] W. Yuan, W. Hou, S. Li, Y. Hao, R. Yang, L.C. Zhang, Y. Zhu, J. Mater. Sci.Technol. 34(2017)1127–1131.
    [16] K. Lin, L. Xia, H. Li, X. Jiang, H. Pan, Y. Xu, W.W. Lu, Z. Zhang, J. Chang,Biomaterials 34(2013)10028–10042.
    [17] J. Rouwkema, A. Khademhosseini, Trends Biotechnol. 34(2016)733–745.
    [18] L.G. Xia, K.L. Lin, X.Q. Jiang, B. Fang, Y.J. Xu, J.Q. Liu, D.L. Zeng, M.L. Zhang, X.L.Zhang, J. Chang, Z.Y. Zhang, Biomaterials 35(2014)8514–8527.
    [19] D.L. Cochran, P.V. Nummikoski, J.D. Schoolfield, A.A. Jones, T.W. Oates, J.Periodontol. 80(2009)725–733.
    [20] G. Zhao, Z. Schwartz, M. Wieland, F. Rupp, J. Geis-Gerstorfer, D.L. Cochran, B.D.Boyan, J. Biomed. Mater. Res. Part A 74(2005)49–58.
    [21] C. Moerke, P. Mueller, B. Nebe, Biomaterials 76(2016)102–114.
    [22] F. Rupp, R.A. Gittens, L. Scheideler, A. Marmur, B.D. Boyan, Z. Schwartz, J.Geisgerstorfer, Acta Biomater. 10(2014)2894–2906.
    [23] R.A. Gittens, L. Scheideler, F. Rupp, S.L. Hyzy, J. Geis-Gerstorfer, Z. Schwartz,B.D. Boyan, Acta Biomater. 10(2014)2907–2918.
    [24] C.J. Wilson, R.E. Clegg, D.I. Leavesley, M.J. Pearcy, Tissue Eng. 11(2005)1–18.
    [25] K. Anselme, Biomaterials 21(2000)667–681.
    [26] Z. Zhen, Y. Zheng, Z. Ge, C. Lai, T. Xi, J. Mater. Sci. Technol. 33(2017)607–615.
    [27] L.Z. Zhao, S.L. Mei, P.K. Chu, Y.M. Zhang, Z.F. Wu, Biomaterials 31(2010)5072–5082.
    [28] S. Xu, Z. Zhou, M. Gao, C. Zou, Y. Che, B. Cody, X. Zou, L. Zhou, J. Mater. Sci.Technol. 32(2016)944–949.
    [29] S.M. Bang, H.J. Moon, Y.D. Kwon, J.Y. Yoo, A. Pae, I.K. Kwon, Clin. Oral Implants Res. 25(2014)831–837.
    [30] I. Abrahamsson, T. Berglundh, E. Linder, N.P. Lang, J. Lindhe, Clin. Oral Implants Res. 15(2004)381–392.
    [31] K. Lin, X. Wang, N. Zhang, Y. Shen, J. Mater. Chem. B 4(2016)3632–3638.
    [32] C. Wu, Y. Zhou, M. Xu, P. Han, L. Chen, J. Chang, Y. Xiao, Biomaterials 34(2013)422–433.
    [33] X. Yang, D. Wang, Y. Liang, H. Yin, S. Zhang, T. Jiang, Y. Wang, Y. Zhou, J.Biomed. Mater. Res. A 102(2014)2395–2407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700