具有高光催化活性的两亲性TiO_2 Janus粒子的制备(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of amphiphilic TiO_2 Janus particles with highly enhanced photocatalytic activity
  • 作者:师艳婷 ; 张巧玲 ; 刘有智 ; 畅俊波 ; 郭婧
  • 英文作者:Yanting Shi;Qiaoling Zhang;Youzhi Liu;Junbo Chang;Jing Guo;Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China;Shanxi North Xing′an Chemical Industry Co.Ltd;
  • 关键词:二氧化钛 ; Pickering乳液 ; 纳米颗粒 ; 光催化 ; 降解
  • 英文关键词:Titanium dioxide;;Pickering emulsion;;Nanoparticles;;Photocatalysis;;Degradation
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:中北大学超重力化工过程山西省重点实验室;山西北方兴安化学工业有限公司;
  • 出版日期:2019-04-04
  • 出版单位:催化学报
  • 年:2019
  • 期:v.40
  • 基金:supported by the National Natural Science Foundation of China(21808214)
  • 语种:英文;
  • 页:CHUA201905020
  • 页数:9
  • CN:05
  • ISSN:21-1601/O6
  • 分类号:191-199
摘要
随着工业技术和社会经济的快速发展,水污染问题日益严重.尤其是化工原料和产品在生产、储存和运输过程中发生的事故,造成大量有机物进入水体,对自然环境造成极大危害.特别是在海洋中发生大规模的泄漏事故时,通过简单的物理方法如吸附、萃取等能够回收大部分资源,但在水体中仍有高浓度的污染物以油滴的形式存在,难以进一步去除.二氧化钛光催化技术在处理高浓度、难降解有机废水方面具有独特优势,但由于其强亲水性导致与污染物接触面积受限,降解效率不高.Pickering乳液是一种界面催化新技术,是由具有两亲性的胶体粒子代替传统表面活性剂形成的油水分散体系,固体粒子吸附在油/水界面,提高了固液接触面积,由此构成了无数个强化反应的微反应器.本文将光催化技术与Pickering乳液优势结合,实现催化剂与有机物界面面积的最大化,从而提高降解效率.首先采用拓扑选择表面改性法用硬脂酸改性二氧化钛制备Janus粒子,在此基础上用制得的二氧化钛Janus粒子构筑Pickering乳液光催化降解体系,研究其对有机废水的降解效率.FM和HRTEM表征结果显示,硬脂酸均匀分布在TiO_2的一侧,符合Janus粒子的结构特征.与纯TiO_2相比,TiO_2 Janus粒子的接触角从14.6°增大到72.9°,具备一定的亲水亲油性,可以有效润湿油性有机物,说明TiO_2 Janus粒子可以构筑稳定的Pickering乳液光催化体系.乳液稳定性实验表明,以TiO_2 Janus粒子为乳化剂的乳液稳定时间长达15 d,明显优于TiO_2和STA-TiO_2.降解高浓度煤油废水和硝基苯废水的实验表明,与纯TiO_2和STA-TiO_2相比,TiO_2 Janus粒子的光催化效率有明显提高,紫外灯辐照120 min后,硝基苯的降解率达到98.9%,约是纯TiO_2的2倍,STA-TiO_2的1.3倍,煤油的降解率也达到89%.采用叔丁醇、对苯醌、乙二胺四乙酸二钠和过硫酸钾作为捕获剂对TiO_2 Janus粒子的光催化机理进行了研究.结果表明,羟基自由基在硝基苯降解过程中起主要作用,光生空穴和超氧自由基起次要作用.TiO_2 Janus粒子能够高效降解有机物归因于粒子的亲油性提高,增大了催化剂粒子与有机污染物的界面接触面积,强化了羟基自由基迁移到有机污染物表面的速率,从而显著提高了光催化效率.
        Stearic-acid-modified TiO_2(STA-TiO_2) particles were prepared via the impregnation approach and used as a precursor for preparing TiO_2 Janus particles.The morphology,structure,and properties of the TiO_2 Janus particles were characterized using Fourier-transform infrared spectroscopy,ultraviolet-visible diffuse reflectance spectroscopy,thermogravimetric analysis,fluorescence microscopy,high-resolution transmission electron microscopy,contact angle analysis,dynamic light scattering,biological microscopy,X-ray photoelectron spectroscopy,and electrochemical impedance spectroscopy measurements.The results show that TiO_2 Janus particles can be successfully prepared via toposelective surface modification.STA grafted on the surface of TiO_2 enhances its hydrophobicity,promotes charge separation,and improves its adsorption capacity for organic compounds.The TiO_2 Janus particles strongly adsorb on an oil-water interface to form a stable Pickering emulsion.The degradation rates of high-concentration kerosene and nitrobenzene wastewaters when the photocatalyst is pure TiO_2,STA-TiO_2,or TiO_2 Janus particles are discussed and compared.The degradation rates were determined using an ultraviolet-visible spectrophotometer.It was found that the Pickering emulsion stabilized by the TiO_2 Janus particles exhibited the best photocatalytic performance;these Janus particles show promising potential for catalytic application.
引文
[1]W.P.Kyaw,M.Sugiyama,Y.Takagi,H.Suzuki,N.Kato,J.Loss Prevent.Proc.,2017.
    [2]W.J.Guo,Environ.Pollut.,2017,230,945-953.
    [3]A.Ismail,M.E.Toriman,H.Juahir,A.M.Kassim,S.M.Zain,W.K.W.Ahmad,W.K.Fah,A.Retnam,M.A.Zali,M.Mokhtar,M.A.Yusria,Mar.Pollut.Bull.,2016,111,339-346.
    [4]G.K.Maiyoh,R.W.Njoroge,V.C.Tuei,Environ.Toxicol.Phar.,2015,40,57-70.
    [5]Z.Cui,W.D.Tian,H.Qin,X.Wang,W.Y.Zhao,J.Clean.Prod.,2018,198,333-350.
    [6]Y.Ouyang,Q.Xu,Y.Xiang,W.Liu,J.Q.Du,Chin.J.Chem.Eng.,2018.
    [7]M.Abdullah,S.K.Kamarudin,Renew.Sust.Energy Rev.,2017,76,212-225.
    [8]R.C.Shen,C.J.Jiang,Q.J.Xiang,J.Xie,X.Li,Appl.Surf.Sci.,2019,471,43-87.
    [9]X.Li,J.Xie,C.J.Jiang,J.G.Yu,P.G.Zhang,Front.Environ.Sci.Eng.,2018,12,14.
    [10]J.W.Wen,X.Li,W.Liu,Y.P.Fang,J.Xie,Y.H.Xu,Chin.J.Catal.,2015,36,2049-2070.
    [11]K.Z.Qi,B.Cheng,J.G.Yu,W.K.Ho,Chin.J.Catal.,2017,38,1936-1955.
    [12]T.Skale,L.Hohl,M.Kraume,A.Drews,J.Membrane Sci.,2017,535,1-9.
    [13]J.Tang,Q.Zhang,K.C.Hu,P.Zhang,J.L.Zhang,J.Catal.,2017,353,192-198.
    [14]W.Ramsden,Proc.Royal Soc.London,1903,72,156-164.
    [15]Pickering,S.Umfreville,J.Chem.Soc.Trans.,1907,91,2001-2021.
    [16]V.Schmitt,M.Destribats,R.Backov,C.R.Phys.,2014,15,761-774.
    [17]X.Zhao,B.Y.Huang,M.El-Aooiti,D.Rousseau,J.Colloid Interf.Sci.,2018,509,360-368.
    [18]W.Wu,S.Gao,W.X.Tu,J.F.Chen,P.Y.Zhang,Particuology,2010,8,453-457.
    [19]D.E.Resasco,Chin.J.Catal.,2014,35,798-806.
    [20]M.F.Nsib,A.Maayoufi,N.Moussa,N.Tarhouni,A.Massouri,A.Houas,Y.Chevalier,J.Photochem.Photobio.A,2013,251,10-17.
    [21]L.Li,Q.L.Zhang,H.L.Fan,Y.Z.Liu,B.Wei,Y.J.Feng,J.Inorg.Mater.,2016,31,413-420.
    [22]W.Wu,S.Gao,W.X.Tu,J.F.Chen,P.Y.Zhang,Particuology,2010,8,453-457.
    [23]P.G.D.Gennes,Rev.Mod.Phys.,1992,64,645-648.
    [24]D.L.Cheung,S.A.F.Bon,Phys.Rev.Lett.,2009,102,066103/1-066103/4.
    [25]B.P.Binks,Curr.Opin.Colloid Interface Sci.,2002,7,21-41.
    [26]Q.B.Meng,P.Yang,T.Feng,X.Ji,Q.Zhang,D.Liu,S.Wu,F.Liang,Z.Zheng,X.M.Song,J.Colloid Interfaces Sci.,2017,74-82.
    [27]R.R.Raju,S.Kosmella,S.E.Friberg,J.Koetz,Colloids Surf.A,2017,533,241-248.
    [28]D.Wei,L.L.Ge,S.H.Lu,J.J.Li,R.Guo,Langmuir,2017,33,5819-5828.
    [29]Z.M.Chang,Z.Wang,M.M.Lu,D.Shao,J.Yue,D.Yang,M.Q.Li,W.F.Dong,Colloids Surf.B,2017,199-206.
    [30]W.X.Li,H.Dong,G.N.Tang,T.Ma,RSC Adv.,2015,5,23181-23188.
    [31]E.Dehghani,M.Salami-Kalajahi,H.Roghani-Mamaqani,Colloids Surf.B,2018,170,85-91.
    [32]B.M.Mattix,T.R.Olsen,M.Casco,L.Reese,J.T.Poole,J.Zhang,R.P.Visconti,A.Simionescu,D.T.Simionescu,F.Alexis,Biomaterials,2014,35,949-960.
    [33]M.Q.Li,D.Q.Li,Anal.Chim.Acta,2018,1021,85-94.
    [34]R.Chaurasiya,A.Dixit,R.Pandey,Superlattices Microst.,2018,122,268-279.
    [35]X.Y.Xu,Y.J.Liu,Y.Gao,H.M.Li,Colloids Surf.A,2017,613-620.
    [36]M.Pera-Titus,L.Leclercq,J.M.Clacens,F.D.Campo,V.Nardello-Rataj,Angew.Chem.Int.Ed.,2015,54,2006-2021.
    [37]T.Skale,L.Hohl,M.Kraume,A.Drews,J.Membrane Sci.,2017,535,1-9.
    [38]J.Tang,Q.Zhang,K.C.Hu,P.Zhang,J.L.Wang,J.Catal.,2017,353,192-198.
    [39]X.Y.Wang,X.Y.Feng,G.P.Ma,Y.Li,M.Ge,Adv.Meter.,2016,28,3131-3137.
    [40]D.Luo,F.Wang,M.K.Alam,F.Yu,I.K.Mishra,J.M.Bao,R.C.Willson,Z.F.Ren,Chem.Mater.,2017,29,3454-3460.
    [41]N.Zahn,G.Kickelbick,Colloids Surf.A,2014,461,142-150.
    [42]L.Li,Y.J.Feng,Y.Z.Liu,B.Wei,J.X.Guo,W.Z.Jiao,Z.H.Zhao,Q.L.Zhang,Appl.Surf.Sci.,2016,363,627-635.
    [43]S.T.Latibari,M.Mehrali,M.Mehrali,A.B.M.Afifi,T.M.I.Mahlia,A.R.Akhiani,H.S.C.Metselaar,Energy,2015,85,635-644.
    [44]L.L.Yin,M.Zhao,H.L.Hu,J.H.Ye,D.F.Wang,Chin.J.Catal.,2017,38,1307-1314.
    [45]C.X.Wang,H.Y.Mao,C.X.Wang,S.H.Fu,Ind.Eng.Chem.Res.,2011,50,11930-11934.
    [46]L.Liang,K.N.Li,K.L.Lv,W.K.Ho,Y.Y.Duan,Chin.J.Catal.,2017,38,2085-2093.
    [47]B.P.Binks,S.O.Lumsdon,Langmuir,2000,16,8622-8631.
    [48]K.Panwar,M.Jassal,A.K.Agrawal,Particuology,2017,33,50-54.
    [49]F.W.Wu,X.Li,W.Liu,S.T.Zhang,Appl.Surf.Sci.,2017,405,60-70.
    [50]X.J.Hu,Y.K.Shi,B.L.Zhu,S.M.Zhang,W.P.Huang,Chin.J.Catal.,2015,36,221-228.
    [51]L.H.Zheng,X.J.Yu,M.C.Long,Q.L.Li,Chin.J.Catal.,2017,38,2076-2084.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700