蜡样芽孢杆菌降解山西浑源褐煤工艺条件的优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of Technological Conditions of Shanxi Hunyuan Lignite Degraded by Bacillus cereus
  • 作者:胡雪华 ; 刘向荣 ; 赵顺省 ; 杨再文 ; 杨征
  • 英文作者:HU Xuehua;LIU Xiangrong;ZHAO Shunsheng;YANG Zaiwen;YANG Zheng;College of Chemistry and Chemical Engineering,Xi'an University of Science and Technology;
  • 关键词:浑源褐煤 ; 蜡样芽孢杆菌 ; 生物溶煤 ; 工艺优化 ; 产物表征
  • 英文关键词:Hunyuan lignite;;Bacillus cereus;;biosolubilization of coal;;process optimization;;product characteristics
  • 中文刊名:MTZH
  • 英文刊名:Coal Conversion
  • 机构:西安科技大学化学与化工学院;
  • 出版日期:2019-01-15
  • 出版单位:煤炭转化
  • 年:2019
  • 期:v.42;No.167
  • 基金:国家自然科学基金资助项目(21373158);; 陕西省科技厅中澳合作项目(2013KW17)
  • 语种:中文;
  • 页:MTZH201901009
  • 页数:9
  • CN:01
  • ISSN:14-1163/TQ
  • 分类号:67-75
摘要
研究了蜡样芽孢杆菌对山西浑源褐煤的降解过程,通过单因素实验探索了煤浆质量浓度、煤氧化程度、接种量、培养方式和培养天数等因素对溶煤效果的影响。结果表明:各因素的最优水平为煤浆质量浓度0.60g(煤)∶50mL(培养基),硝酸与煤氧化比例15g(煤)∶50mL(硝酸),接种量4.0mL(菌液)∶50mL(培养基),培养温度30℃,摇床转速160r/min,培养时间31d,此时溶煤率达到34.45%。进一步通过正交实验优化培养条件,得到最优降解工艺条件为煤浆质量浓度0.50g(煤)∶50mL(培养基),接种量7.0mL(菌液)∶50mL(培养基),培养温度30℃,摇床转速160r/min,培养时间22d。在此条件下,溶煤率达到38.57%。利用元素分析、傅立叶红外光谱、X-射线衍射等手段对原煤、氧化煤和残煤进行了表征。结果表明:煤经硝酸氧化处理后,碳和氢含量减少,含氧量由20.49%(质量分数,下同)增加到27.87%,含氮量由1.68%增加到5.71%,氧化煤的晶核和缩聚程度下降;氧化煤中羧基和氨基的存在,增加了生物酶与氧化煤的作用位点,使煤中大分子结构被降解为低分子质量类物质。紫外-可见光谱和气相色谱-质谱联用分析表明,溶煤产物中含有大量长链脂肪族碳氢化合物、芳烃衍生物和酯类等物质。
        The degradation process of Hunyuan lignite in Shanxi by Bacillus cereus was studied.Through the single factor experiment,the effects of coal pulp mass concentration,oxidation degree of coal,inoculum amount,cultivation way and incubation time on the degree of biosolubilization were investigated.The optimal level of each factor is coal pulp mass concentration 0.60g(coal)∶50mL(culture medium),coal to HNO3 ratio 15g∶50mL,inoculum amount4.0mL(bacterial solution)∶50mL(culture medium),34.45% oxidized lignite is degraded for31 dat 30 ℃ and 160r/min.Further orthogonal experiments were conducted to optimize the culture conditions,it shows that the best technological conditions is coal pulp mass concentration0.50g(coal)∶50mL(culture medium),inoculation amount 7.0mL(bacterial solution)∶50mL(culture medium),38.57% oxidized lignite degraded at 30 ℃ and 160r/min for 22 d.Initial coal,oxidized coal and residual coal were characterized by ultimate analysis,Fourier transform infrared spectroscopy and X-ray diffraction.The results show that the contents of C and H decrease,the O content increases from 20.49%(mass fraction,the same below)to 27.87%,the N content increases from 1.68% to 5.71%,and the nucleation and polycondensation degree of oxidized coal decrease.The existence of carboxyl group and amino group in oxidized coal increases the interaction site between enzymes and oxidized coal,which makes the macromolecular structure of coal degraded into low molecular weight substances.Ultraviolet-visible spectroscopy and gas chromatography-mass spectrum show that coal-soluble products are long-chain aliphatic,aromatic hydrocarbon derivatives and esters substances.
引文
[1]曹红加,张清峰,李悦,等.600MW高水分褐煤锅炉结渣特性[J].华北电力技术,2008(3):30-34.CAO Hongjia,ZHANG Qingfeng,LI Yue,et al.Slagging Characteristic of 600MW Boiler Combusting with High Water Content Lignite[J].North China Electric Power,2008(3):30-34.
    [2]石开仪,李志,陈鹏.云芝菌对褐煤液化产物的13C NMR分析[J].煤炭转化,2016,39(3):67-71.SHI Kaiyi,LI Zhi,CHEN Peng.13 C NMR Analysis of Bio-solubilized Lignite by Coriolus versicolor[J].Coal Conversion,2016,39(3):67-71.
    [3]FAKOUSSA R M.Production of Water-soluble Coal-substances by Partial Microbial Liquefaction of Untreated Hard Coal[J].Resources,Conservation and Recycling,1981,1(3/4):251-260.
    [4]COHEN M S,GABRIELE P D.Degradation of Coal by the Fungi Polyporous versicol and Poria placenta[J].Applied and Environmental Microbial,1982,44(1):23-27.
    [5]ACHI O K.Growth and Coal-solubilizing Activity of Penicillium simplicissimum on Coal-related Aromatic Compounds[J].Bioresource Technology,1994,48(1):53-57.
    [6]RALPH J P,CATCHESIDE D E A.Transformations of Low Rank Coal by Phanerochaete chrysosporium and Other Woodrot Fungi[J].Fuel Processing Technology,1997,52(1/2/3):79-93.
    [7]YUAN Hongli,YANG Jinshui,CHEN Wenxin.Production of Alkaline Materials,Surfactants and Enzymes by Penicillium decumbens Strain P6in Association with Lignite Degradation/Solubilization[J].Fuel,2006,85(10/11):1378-1382.
    [8]李建涛,刘向荣,皮淑颖,等.煤的微生物转化研究进展[J].西安科技大学学报,2017,37(1):106-120.LI Jiantao,LIU Xiangrong,PI Shuying,et al.Research and Development of Coal Bioconversion[J].Journal of Xi’an University of Science and Technoloy,2017,37(1):106-120.
    [9]YIN Sudong,TAO Xiuxiang,SHI Kaiyi,et al.Biosolubilisation of Chinese Lignite[J].Energy,2009,34(6):775-781.
    [10]ELBEYLI I Y,PALANTOKEN A,PISKIN S,et al.Liquefaction/Solubilization of Low-rank Turkish Coals by White-rot Fungus(Phanerochaete chrysosporium)[J].Energy Sources,Part A:Recovery,Utilization and Environmental Effects,2006,28(11):1063-1073.
    [11]SELVI A V,BANERJEE R,RAM L C,et al.Biodepolymerization Studies of Low Rank Indian Coals[J].World Journal of Microbiology and Biotechnology,2009,25(10):1713-1720.
    [12]石开仪,陶秀祥,尹苏东,等.抚顺褐煤的微生物溶煤[J].中国矿业大学学报,2007,36(3):339-342.SHI Kaiyi,TAO Xiuxiang,YIN Sudong,et al.Bio-solubilization of Fushun Lignite[J].Journal of China University of Mining and Technology,2007,36(3):339-342.
    [13]ROMANOWSKA I,STRZELECKI B,BIELECKI S.Biosolubilization of Polish Brown Coal by Gordonia alkanivorans S7and Bacillus mycoides NS1020[J].Fuel Processing Technology,2015,131:430-436.
    [14]SHI Kaiyi,TAO Xiuxiang,YIN Sudong,et al.Bio-liquefaction of Fushun Lignite:Characterization of Newly Isolated Lignite Liquefying Fungus and Liquefaction Products[J].Procedia Earth and Planetary Science,2009,1(1):627-633.
    [15]贾建军,刘向荣,张杰,等.热带假丝酵母菌溶煤培养基的响应面优化[J].西安科技大学学报,2017,37(2):267-273.JIA Jianjun,LIU Xiangrong,ZHANG Jie,et al.Medium Response Surfacey Optimization of Coal Biosolubilization by Candidatropicalis[J].Journal of Xi’an University of Science and Technoloy,2017,37(2):267-273.
    [16]岳子林,刘向荣,赵顺省,等.微生物溶解内蒙古褐煤影响因素及产物分析[J].西安科技大学学报,2017,37(2):251-259.YUE Zilin,LIU Xiangrong,ZHAO Shunsheng,et al.Influential Factors and Products of Biosolubilization of Inner Mongolia Lignite[J].Journal of Xi’an University of Science and Technoloy,2017,37(2):251-259.
    [17]YAO Jinghua,XIAO Lei,WANG Liqiang.Separation and Analysis of Lignite Bioconversion Products[J].International Journal of Mining Science and Technology,2012,22(4):529-532.
    [18]SHI Kaiyi,TAO Xiuxiang,HONG Fenfen,et al.Mechanism of Oxidation of Low Rank Coal by Nitric Acid[J].Journal of Coal Science and Engineering(China),2012,18(4):396-399.
    [19]李建涛,刘向荣,皮淑颖,等.山西临汾褐煤微生物降解工艺条件的优化[J].煤炭转化,2017,40(2):65-72.LI Jiantao,LIU Xiangrong,PI Shuying,et al.Optimization of Technological Conditions for Microorganisms Degrading Shanxi Linfen Lignite[J].Coal Conversion,2017,40(2):65-72.
    [20]徐敬尧,张明旭.球红假单胞菌降解褐煤的条件研究[J].安徽理工大学学报(自科科学版),2008,28(3):46-51.XU Jingyao,ZHANG Mingxu.Study on Process Conditions of Lignite Biodegradation by Rhodopseudomonas spheroides[J].Journal of Anhui University of Science and Technology(Natural Science),2008,28(3):46-51.
    [21]YIN Sudong,TAO Xiuxiang,SHI Kaiyi.Bio-solubilization of Chinese LigniteⅡ:Protein Adsorption onto the Lignite Surface[J].Mining Science and Technology(China),2009,19(3):363-368.
    [22]YE Cuiping,YANG Zhenjian,LI Wenying,et al.Effect of Adjusting Coal Properties on Hulunbuir Lignite Pyrolysis[J].Fuel Processing Technology,2017,156:415-420.
    [23]SONG Lingling,FENG Li,LIU Jiongtian,et al.Effect of Alkali Treatment on the Pore Structure of Lignite[J].Journal of China University of Mining and Technology,2012,41(4):629-634.
    [24]TAO Xiuxiang,PAN Lanying,SHI Kaiyi,et al.Bio-solubilization of Chinese LigniteⅠ:Extra-cellular Protein Analysis[J].Mining Science and Technology(China),2009,19(3):358-362.
    [25]LIU Zhenxue,ZONG Zhimin,WEI Xianyong.GC/MS Analysis of Datong Raw and Oxidized Coal Extract Using Methanol/Tetrahydrofuran Mixed Solvent[J].Fuel Chemistry Technology,2003,31(1):177-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700