C/C多孔体热处理温度对C/C-SiC复合材料微观结构和热学性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of heat treatment temperature of C/C porous preform on microstructure and thermal properties of C/C-SiC composites
  • 作者:虎琳 ; 李崇俊 ; 张永辉
  • 英文作者:HU Lin;LI Chong-jun;ZHANG Yong-hui;Xi'an Aerospace Composite Materials Research Institute;
  • 关键词:C/C-SiC复合材料 ; 反应熔体浸渗法 ; 微观结构 ; 热学性能
  • 英文关键词:C/C-SiC composites;;RMI;;microstructure;;thermal properties
  • 中文刊名:TASU
  • 英文刊名:Carbon
  • 机构:西安航天复合材料研究所;
  • 出版日期:2018-03-15
  • 出版单位:炭素
  • 年:2018
  • 期:No.174
  • 语种:中文;
  • 页:TASU201801003
  • 页数:6
  • CN:01
  • ISSN:23-1172/TQ
  • 分类号:18-23
摘要
以针刺网胎无纬布为预制体,采用化学气相渗透(CVI)、压力浸渍树脂/炭化(PIC)及反应熔体浸渗法(RMI)等组合工艺快速制备C/C-SiC复合材料。研究了C/C多孔体的高温热处理温度对C/C-SiC复合材料微观结构和热学性能的影响,结果表明:多孔体经高温热处理后密度有所减小而孔隙率增大;相较于1800℃热处理,多孔体经2200℃热处理后制备的C/C-SiC复合材料密度更大(ρ=2.12g/cm3),孔隙率更低(η=2.7%),SiC基体含量更高(ω=41.11%);C/C-SiC复合材料的比热容和平均热膨胀系数随着温度的升高而增大,而热扩散系数和导热系数随着温度的升高不断减小;多孔体经2200℃热处理后制备的C/C-SiC复合材料X-Y向具有更大的导热系数和更小的热膨胀系数,其室温下的导热系数为83.120W/(m·K),室温~1000℃的平均热膨胀系数为1.608×10-6/℃。
        The C/C-SiC composites were fabricated by the combination of chemical vapor infiltration,resin impregnation/carbonization and reactive melt infiltration. The effects of heat treatment temperature(HTT) of C/C porous preform on microstructure and thermal properties of C/C-SiC composites were investigated. The results show that the density of C/C porous preform decreases and the porosity increases after HTT. Compared with 1800℃,C/C-SiC composites prepared by HTT at 2200℃ have higher density(ρ=2.12 g/cm~3) and lower porosity(η=2.7%),and the content of SiC(ω=41.11%) is higher. The specific heat capacity and the average coefficient of thermal expansion(CTE) of C/C-SiC composites increase with the increase of temperature,while the thermal diffusion coefficient and thermal conductivity decrease with the increase of temperature. The C/C-SiC composites prepared by HTT at 2200℃ have higher thermal conductivity and smaller thermal expansion coefficient,and the thermal conductivity at RT is 83.120 W/(m·K),the CTE at RT~1000℃ is 1.608×10~(-6)/℃.
引文
[1]Krenkel W,Berndt F.C/C-SiC Composites for space applications and advanced friction systems[J].Mater Sci Eng A,2005,412:177.
    [2]Zhou X,Zhu D M,Xie Q,et al.Friction and wear properties of C/C-SiC braking composites[J].Ceram Int,2012,38(3):2467.
    [3]张立同,成来飞.连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J].复合材料学报,2007,24(2):1-6.
    [4]Walter Krenkel,Bernhard Heidenrech,Ralph Renz.C/C-SiC Composites for advanced friction systems[J].Adv Eng Mater,2002,4(7):427.
    [5]张智,郝志彪,闫联生.C/C-SiC复合材料的制备方法及研究现状[J].炭素,2008(2):29-35.
    [6]Krenkel W.Cost effective processing of CMC composites by melting infiltration(LSI-process)[J].Ceram Eng SciProc,2001,22(3):443.
    [7]王静.近零膨胀C/C-SiC复合材料的反应烧结法制备及性能研究[D].长沙,国防科学技术大学,2013.
    [8]Zhang Yong-hui,Xiao Zhi-chao,Wang Jin-ping,et al.Effect of pyro-carbon content in C/C preforms on microstructure and mechanical properties of the C/C–SiC composites[J].Materials Science and Engineering A,2009,502:64-69.
    [9]Jiang Si-Zhou,Xiong Xiang,Chen Zhao-Ke,et al.Influence factors of C/C–SiC dual matrix composites prepared by reactive melt infiltration[J].Materials and Design,2009,30:3738-3742.
    [10]张波,李瑞珍,解惠贞.熔融渗硅法制备C/C-SiC复合材料工艺参数研究[J].材料导报,2015,29(25):389—392.
    [11]王继平,金志浩,钱军民等.C/C-SiC材料的快速制备及显微结构研究[J].稀有金属材料与工程,2006,2(35):223-226.
    [12]唐睿,王继平,龙冲生等.反应熔渗法制备C/C-SiC复合材料的组织结构及性能[J].核动力工程,2009,1(30):68-73.
    [13]E.Fitzer,A.Gkokodis,M.Heine.Carbon fibers and their composites[J].High temperature-High pressures.1984,16:363-392.
    [14]Bell J.,李竞生,陈崇希(译).多孔介质流体力学[M].北京:中国建筑工业出版社,1982.
    [15]Li Ke-zhi,Xie Jing,Fu Qian-gang,et al.Effects of porous C/C density on the densification behavior and ablation property of C/C-ZrC-SiC composites[J].Carbon,2013,57:161-168.
    [16]田莳.材料物理性能[M].北京:北京航空航天大学出版社,2004.
    [17]李专,肖鹏,熊翔等.C/C-SiC复合材料的导热性能及其影响因素[J].中南大学学报(自然科学版),2013,44(1):40-45.
    [18]谢乔.C/C-SiC复合材料的性能研究[D].西安:西北工业大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700