不同微结构SiCNO陶瓷的制备及介电特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and dielectric properties of different microstructured SiCNO ceramic
  • 作者:余煜玺 ; 刘逾 ; 张志昊 ; 伞海生 ; 许春来
  • 英文作者:YU Yuxi;LIU Yu;ZHANG Zhihao;SAN Haisheng;XU Chunlai;Fujian Key Laboratory of Advanced Materials,Department of Materials Science and Engineering,College of Materials,Xiamen University;Pen-Tung Sah Institute of Micro-Nano Science and technology,Xiamen University;China Academy of Launch Vehicle Technology;
  • 关键词:聚乙烯基硅氮烷 ; 嵌段共聚物 ; SiCNO ; 微结构
  • 英文关键词:polyvinysilazane;;block copolymer;;SiCNO;;microstructure
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:厦门大学材料学院材料科学与工程系福建省特材选进材料重点实验室福建;厦门大学萨本栋微米纳米科学技术研究院;中国运载火箭技术研究院;
  • 出版日期:2016-11-30
  • 出版单位:功能材料
  • 年:2016
  • 期:v.47;No.398
  • 基金:国家自然科学基金资助项目(51675452,51302235);; 福建省高等学校新世纪优秀人才支持计划资助项目(2013);; 福建省科技创新平台建设计划资助项目(2014H2006)
  • 语种:中文;
  • 页:GNCL201611004
  • 页数:5
  • CN:11
  • ISSN:50-1099/TH
  • 分类号:23-26+31
摘要
以双亲性嵌段共聚物F127(PEO106-PPO70-PEO106)为模板剂,聚乙烯基硅氮烷(PVSZ)为前驱体,采用软模板法和无压烧结工艺制备出不同微结构SiCNO陶瓷。利用扫描电镜、电子探针、X射线衍射仪、动态光散射、热重分析和阻抗分析仪等手段表征SiCNO陶瓷,并分析了不同形貌结构对陶瓷介电损耗特性的影响。结果表明,通过精确控制蒸发温度可制备出棒状、十字架状、球形和卵形结构SiCNO陶瓷;SiCNO陶瓷介电损耗与形貌结构密切相关,介电损耗值随着蒸发温度升高呈先增大后降低的趋势,当陶瓷微观结构为十字架结构时,介电损耗达到最高值为0.24;当陶瓷微观结构为卵形结构时,介电损耗最低值为0.03。
        The different microstructured SiCNO ceramics were prepared by using amphiphilic block copolymer F127(PEO106-PPO70-PEO106)as template agent and polyvinysilazane(PVSZ)as the precursors.The morphology and structure properties of the SiCNO ceramics were characterized by scanning electron microscopy,electron probe,X-ray diffraction,dynamic light scattering,thermogravimetric analysis and impedance analyzer.The results show that the SiCNO ceramics with rod like,cross shaped,spherical and oval structures were prepared by controlling the evaporation temperature.Furthermore,the influence of different microstructured SiCNO ceramic dielectric loss characteristics were studied,the dielectric loss of the lowest and highest values were 0.03and0.24,corresponding to the oval structure and the cross structure.
引文
[1]Riedel R,Kienzle A,Dressler W,et al.A silicoboron carbonitride ceramic stable to 2 000℃[J].Nature,1996,382(6594):796-798.
    [2]Hauser R,Nahar-borchard S,Riedel R,et al.Polymerderived SiBCN ceramic and their potential application for high temperature membranes[J].Journal of the Ceramic Society of Japan,2006,114(1330):524-528.
    [3]Li Y,Yu Y,San H,et al.Wireless passive polymer-derived SiCN ceramic sensor with integrated resonator/antenna[J].Applied Physics Letters,2013,103(16):163505.
    [4]Wang Y,Fei W,Fan Y,et al.Silicoaluminum carbonitride ceramic resist to oxidation/corrosion in water vapour[J].Journal of Materials Research,2006,21(07):1625-1628.
    [5]Wang Y,An L,Fan Y,et al.Oxidation of polymer-derived SiAlCN ceramics[J].Journal of the American Ceramic Society,2005,88(11):3075-3080.
    [6]Giacomelli C,Schmidt V,Aissou K,et al.Block copolymer systems:from single chain to self-assembled nanostructures[J].Langmuir,2010,26(20):15734-15744.
    [7]Gilroy J B,Lunn D J,Patra S K,et al.Fiber-like micelles via the crystallization-driven solution self-assembly of poly(3-hexylthiophene)-block-poly(methyl methacrylate)copolymers[J].Macromolecules,2012,45(14):5806-5815.
    [8]Krishnaji S T,Huang W,Rabotyagova O,et al.Thin film assembly of spider silk-like block copolymers[J].Langmuir,2011,27(3):1000-1008.
    [9]Chen D,Gong Y,He T,et al.Effect of crystallization on the lamellar orientation in thin films of symmetric poly(styrene)-b-poly(L-lactide)diblock copolymer[J].Macromolecules,2006,39(12):4101-4107.
    [10]Kamperman M,Fierke M A,Garcia C B W,et al.Morphology control in block copolymer/polymer derived ceramic precursor nanocomposites[J].Macromolecules,2008,41(22):8745-8752.
    [11]Kamperman M,Du P,Scarlat r O,et al.Composition and morphology control in ordered mesostructured hightemperature ceramics from block copolymer mesophases[J].Macromolecular Chemistry and Physics,2007,208(19-20):2096-2108.
    [12]Wan J,Alizadeh A,Taylor S T,et al.Nanostructured non-oxide ceramics templated via block copolymer selfassembly[J].Chemistry of Materials,2005,17(23):5613-5617.
    [13]Wan J,Malenfant P R L,Taylor S T,et al.Microstructure of block copolymer/precursor assembly for Si—C—N based nano-ordered ceramics[J].Materials Science and Engineering:A,2007,463(1):78-88.
    [14]Innocenzi P,Malfatti L,Piccinini M,et al.Evaporationinduced crystallization of pluronic F127studied in situ by time-resolved infrared spectroscopy[J].The Journal of Physical Chemistry A,2009,114(1):304-308.
    [15]Lazzara G,Milioto S,Gradzielski M,et al.Small angle neutron scattering,X-ray diffraction,differential scanning calorimetry,and thermogravimetry studies to characterize the properties of clay nanocomposites[J].The Journal of Physical Chemistry C,2009,113(28):12213-12219.
    [16]Loo Y L,Register R A,Ryan A J.Modes of crystallization in block copolymer microdomains:breakout,templated,and confined[J].Macromolecules,2002,35(6):2365-2374.
    [17]Xu J T,Turner S C,Fairclough J P A,et al.Morphological confinement on crystallization in blends of poly(oxyethylene-b lock-oxybutylene)and poly(oxybutylene)[J].Macromolecules,2002,35(9):3614-3621.
    [18]Lee H S,KimurA T.Effects of microstructure on the dielectric and piezoelectric properties of lead metaniobate[J].Journal of the American Ceramic Society,1998,81(12):3228-3236.
    [19]Huan J,Zhou W,Fa L.Synthesis and dielectric properties of nano Si/C/N powders[J].Journal of Materials Chemistry,2002,12(8):2459-2462.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700