FeCrAl铁素体不锈钢在压水堆水化学偏离工况下的应力腐蚀行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Stress Corrosion Behavior of FeCrAl Ferrite Stainless Steel under PWR Water Deviation Condition
  • 作者:肖婷 ; 肖军 ; 陈勇 ; 周军 ; 王辉
  • 英文作者:XIAO Ting;XIAO Jun;CHEN Yong;ZHOU Jun;WANG Hui;Science and Technology on Reactor Fuel and Materials Laboratory,Nuclear Power Institute of China;
  • 关键词:应力腐蚀开裂 ; FeCrAl铁素体不锈钢 ; 慢应变速率拉伸
  • 英文关键词:stress corrosion cracking;;FeCrAl ferrite stainless steel;;slow strain rate tensile
  • 中文刊名:YZJS
  • 英文刊名:Atomic Energy Science and Technology
  • 机构:中国核动力研究设计院反应堆燃料及材料重点实验室;
  • 出版日期:2018-12-24 11:37
  • 出版单位:原子能科学技术
  • 年:2019
  • 期:v.53
  • 语种:中文;
  • 页:YZJS201903007
  • 页数:6
  • CN:03
  • ISSN:11-2044/TL
  • 分类号:37-42
摘要
采用慢应变速率拉伸(SSRT)试验方法,研究了FeCrAl铁素体不锈钢在偏离压水堆正常工况下的应力腐蚀行为。结果表明,在含有微量Cu~(2+)与Cl~-的高温水介质中,应变速率为2×10~(-7) s~(-1)时,FeCrAl铁素体不锈钢将发生显著的应力腐蚀开裂;其在含Cu~(2+)和Cl~-的高温水介质中的应力腐蚀开裂主要由点蚀导致。
        Stress corrosion behavior of FeCrAl ferrite stainless steel under PWR water deviation condition was investigated by slow strain rate tensile(SSRT) tests. The results show that FeCrAl ferrite stainless steel is subject to stress corrosion cracking(SCC) at strain rate of 2×10~(-7) s~(-1), with the co-exist of Cu~(2+) and Cl~- in water. SCC of FeCrAl ferrite stainless steel in high temperature water containing Cu~(2+) and Cl~- is considered to result from pitting corrosion.
引文
[1] ZINKLE S J, TERRANI K A, GEHIN J C, et al. Accident tolerant fuels for LWRs: A perspective[J]. Journal of Nuclear Materials, 2014, 448: 374-379.
    [2] FIELD K G, GUSSEV M N, YAMAMOTO Y, et al. Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications[J]. Journal of Nuclear Materials, 2014, 454: 352-358.
    [3] PINT B A, TERRANI K A, BRADY M P, et al. High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments[J]. Journal of Nuclear Materials, 2013, 440: 420-427.
    [4] PINT B A, TERRANI K A, YAMAMOTO Y, et al. Material selection for accident tolerant fuel cladding[J]. Metallurgical and Materials Transactions E, 2015, 2(3): 190-196.
    [5] HUA Xunxiang, TERRANI K A, WIRTH B D, et al. Hydrogen permeation in FeCrAl alloys for LWR cladding application[J]. Journal of Nuclear Materials, 2015, 461: 282-291.
    [6] HWANIL J, KIMURA A. Stress corrosion cracking susceptibility of oxide dispersion strengthened ferritic steel in supercritical pressurized water dissolved with different hydrogen and oxygen contents[J]. Corrosion Science, 2014, 78: 193-199.
    [7] SHU Jun, BI Hongyun, LI Xin, et al. The effect of copper and molybdenum on pitting corrosion and stress corrosion cracking behavior of ultra-pure ferritic stainless steels[J]. Corrosion Science, 2012, 57: 89-98.
    [8] SZKLARSKA-SMIALOWSKA Z. Mechanism of pit nucleation by electrical breakdown of the passive film[J]. Corrosion Science, 2002, 44: 1 143-1 149.
    [9] HOAR T P, MEARS D C, ROTHWELL G P. The relationships between anodic passivity, brightening and pitting[J]. Corrosion Science, 1965, 5: 279-289.
    [10] 陈鹤鸣,马春来,白新德. 核反应堆材料腐蚀及其防护[M]. 北京:原子能出版社,1984:94-95.
    [11] 舒俊. 汽车排气系统用铁素体不锈钢耐蚀性能和成形性能的研究[D]. 上海:上海交通大学材料科学与工程学院,2013.
    [12] 林震霞,邱绍宇,肖军,等. Cl-和Cu2+对国产690合金应力腐蚀性能的影响[J]. 核动力工程,2015,36(1):50-54. LIN Zhenxia, QIU Shaoyu, XIAO Jun, et al. Effects of Cl- and Cu2+ on stress corrosion cracking of alloy 690[J]. Nuclear Power Engineering, 2005, 36(1): 50-54(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700