立方相MnGeTe_2:一种有前景的热电材料(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Promising cubic MnGeTe_2 thermoelectrics
  • 作者:周斌强 ; 李文 ; 王晓 ; 李娟 ; 郑良涛 ; 高博 ; 张馨月 ; 裴艳中
  • 英文作者:Binqiang Zhou;Wen Li;Xiao Wang;Juan Li;Liangtao Zheng;Bo Gao;Xinyue Zhang;Yanzhong Pei;Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University;
  • 英文关键词:thermoelectric;;MnGeTe_2;;zT;;SPB model
  • 中文刊名:SCMA
  • 英文刊名:中国科学:材料科学(英文版)
  • 机构:Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University;
  • 出版日期:2019-03-01
  • 出版单位:Science China Materials
  • 年:2019
  • 期:v.62
  • 基金:supported by the National Natural Science Foundation of China (11474219 and 51772215);; the National Key Research and Development Program of China (2018YFB0703600);; the Fundamental Research Funds for Science and Technology Innovation Plan of Shanghai (18JC1414600);; Fok Ying Tung Education Foundation (20170072210001);; “Shu Guang” Project Supported by Shanghai Municipal Education Commission;; Shanghai Education Development Foundation
  • 语种:英文;
  • 页:SCMA201903007
  • 页数:10
  • CN:03
  • ISSN:10-1236/TB
  • 分类号:97-106
摘要
具有立方结构的IV族碲化物半导体(PbTe和SnTe)已经引领了热电领域的诸多革新.近年来,非立方相化合物GeTe与MnTe也表现出很好的热电前景.基于此,本文对GeTe与MnTe的衍生化合物(MnGeTe_2)的热电性能进行了探究.在本工作中,本征态MnGeTe_2因单质锗的析出而存在高浓度的阳离子空位,载流子浓度高达~3.6×10~(21)cm~(-3),远高于热电应用所需,通过Bi的掺杂可使得载流子显著降低(室温下MnGe_(0.9)Bi_(0.)1Te_2载流子约为~9×10~(20)cm~(-3)).在这样大的载流子浓度范围内,一方面可以基于声学声子散射机制下的单抛物带模型,实现对载流子输运性质进行全面的评估;另一方面还可以实现热电功率因子的优化.此外,由于材料中存在高度无序的阳离子和阳离子空位,可在测试温度范围内获得1.2 W m~(-1)K~(-1)甚至更低的晶格热导率.当载流子浓度达到优化值~9×10~(20)cm~(-3)时,在850 K各向同性的立方相下可获得接近1.0的zT值以及高于200 HV的维氏硬度值,进一步证实MnGeTe_2是一个很有前景的热电材料.
        Semiconducting cubic group IV monotellurides,including PbTe and SnTe, have historically led most of the advancements in thermoelectrics. Recently, noncubic ones such as GeTe and MnTe have also shown to be promising,which motivates the current work focusing on the thermoelectric properties of MnGeTe_2, a derivative compound of noncubic GeTe and MnTe but crystalizing in a cubic structure.This compound intrinsically comes with a carrier concentration as high as ~3.6×10~(21) cm~(-3), indicating the existence of highconcentration cation vacancies due to Ge-precipitation. This intrinsic carrier concentration is much higher than that needed for thermoelectric applications but can be successfully decreased to ~9×10~(20) cm~(-3) for MnGe_(0.9)Bi_(0.1)Te_2 at room temperature. Such a broad carrier concentration not only offers a full assessment of its electronic transport properties according to a single parabolic band model with acoustic scattering, but also enables an optimization for thermoelectric power factor.The low lattice thermal conductivity of ~1.2 W m~(-1) K~(-1) or lower in the entire temperature range, can be understood by the highly disordered cations and cation vacancies. A peak zT approaching 1.0 at 850 K was achieved in materials at an optimal carrier concentration of ~9×10~(20) cm~(-3), an isotropic cubic structure as well as a Vickers hardness of >200 HV, strongly indicating MnGeTe_2 as a promising thermoelectric material.
引文
1 Tan G,Shi F,Hao S,et al.Codoping in SnTe:enhancement of thermoelectric performance through synergy of resonance levels and band convergence.J Am Chem Soc,2015,137:5100-5112
    2 Snyder GJ,Toberer ES.Complex thermoelectric materials.Nat Mater,2008,7:105-114
    3 Chen Z,Zhang X,Pei Y.Manipulation of phonon transport in thermoelectrics.Adv Mater,2018,30:1705617
    4 Morelli DT,Jovovic V,Heremans JP.Intrinsically minimal thermal conductivity in cubic I-V-VI2semiconductors.Phys Rev Lett,2008,101:035901
    5 Delaire O,Ma J,Marty K,et al.Giant anharmonic phonon scattering in PbTe.Nat Mater,2011,10:614-619
    6 Lin S,Li W,Li S,et al.High thermoelectric performance of Ag9GaSe6enabled by low cutoff frequency of acoustic phonons.Joule,2017,1:816-830
    7 Li W,Lin S,Weiss M,et al.Crystal structure induced ultralow lattice thermal conductivity in thermoelectric Ag9AlSe6.Adv Energy Mater,2018,8:1800030
    8 Li W,Lin S,Ge B,et al.Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6.Adv Sci,2016,3:1600196
    9 Chen Z,Jian Z,Li W,et al.Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence.Adv Mater,2017,29:1606768
    10 Kim SI,Lee KH,Mun HA,et al.Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics.Science,2015,348:109-114
    11 Chen Z,Ge B,Li W,et al.Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics.Nat Commun,2017,8:13828
    12 Hsu KF,Loo S,Guo F,et al.Cubic AgPbmSbTe2+m:bulk thermoelectric materials with high figure of merit.Science,2004,303:818-821
    13 Biswas K,He J,Blum ID,et al.High-performance bulk thermoelectrics with all-scale hierarchical architectures.Nature,2012,489:414-418
    14 Poudel B,Hao Q,Ma Y,et al.High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys.Science,2008,320:634-638
    15 Ioffe AF,Ioffe AV.Thermal conductivity of solid solutions.Soviet Physics Solid State,1960,2(5):719-728
    16 Pei Y,Zheng L,Li W,et al.Interstitial point defect scattering contributing to high thermoelectric performance in SnTe.Adv Electron Mater,2016,2:1600019
    17 Tan G,Zeier WG,Shi F,et al.High thermoelectric performance SnTe-In2Te3solid solutions enabled by resonant levels and strong vacancy phonon scattering.Chem Mater,2015,27:7801-7811
    18 Liu W,Tan X,Yin K,et al.Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnxsolid solutions.Phys Rev Lett,2012,108:166601
    19 Pei Y,Shi X,LaLonde A,et al.Convergence of electronic bands for high performance bulk thermoelectrics.Nature,2011,473:66-69
    20 Heremans JP,Jovovic V,Toberer ES,et al.Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states.Science,2008,321:554-557
    21 Kaidanov VI,Nemov SA,Ravich YI,et al.Influence of resonance states on the Hall-effect and electrical-conductivity of PbTe doped with both thallium and sodium simultaneously.Soviet Physics Semiconductors,1983,17(9):1027-1030
    22 Heremans JP,Wiendlocha B,Chamoire AM.Resonant levels in bulk thermoelectric semiconductors.Energy Environ Sci,2012,5:5510-5530
    23 Bilc D,Mahanti SD,Quarez E,et al.Resonant states in the electronic structure of the high performance thermoelectrics AgPbmSbTe2+m:the role of Ag-Sb microstructures.Phys Rev Lett,2004,93:146403
    24 Lin S,Li W,Chen Z,et al.Tellurium as a high-performance elemental thermoelectric.Nat Commun,2016,7:10287
    25 Pei Y,Gibbs ZM,Gloskovskii A,et al.Optimum carrier concentration in n-Type PbTe thermoelectrics.Adv Energy Mater,2014,4:1400486
    26 Pei Y,LaLonde AD,Heinz NA,et al.High thermoelectric figure of merit in PbTe alloys demonstrated in PbTe-CdTe.Adv Energy Mater,2012,2:670-675
    27 Li W,Wu Y,Lin S,et al.Advances in environment-friendly SnTe thermoelectrics.ACS Energy Lett,2017,2:2349-2355
    28 Al Rahal Al Orabi R,Mecholsky NA,Hwang J,et al.Band degeneracy,low thermal conductivity,and high thermoelectric figure of merit in SnTe-CaTe alloys.Chem Mater,2016,28:376-384
    29 Banik A,Shenoy US,Anand S,et al.Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties.Chem Mater,2015,27:581-587
    30 Tan G,Zhao LD,Shi F,et al.High thermoelectric performance of p-Type SnTe via a synergistic band engineering and nanostructuring approach.J Am Chem Soc,2014,136:7006-7017
    31 Zhang Q,Liao B,Lan Y,et al.High thermoelectric performance by resonant dopant indium in nanostructured SnTe.Proc Natl Acad Sci USA,2013,110:13261-13266
    32 Li W,Zheng L,Ge B,et al.Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects.Adv Mater,2016,29:1605887
    33 Tang J,Gao B,Lin S,et al.Manipulation of band structure and interstitial defects for improving thermoelectric SnTe.Adv Funct Mater,2018,24:1803586
    34 Li J,Chen Z,Zhang X,et al.Electronic origin of the high thermoelectric performance of GeTe among the p-type group IVmonotellurides.NPG Asia Mater,2017,9:e353-e353
    35 Li J,Zhang X,Chen Z,et al.Low-symmetry rhombohedral GeTe thermoelectrics.Joule,2018,2:976-987
    36 Li J,Chen Z,Zhang X,et al.Simultaneous optimization of carrier concentration and alloy scattering for ultrahigh performance GeTe thermoelectrics.Adv Sci,2017,4:1700341
    37 Hong M,Chen ZG,Yang L,et al.Realizing zT of 2.3 in Ge1-x-ySbxInyTe via reducing the phase-transition temperature and introducing resonant energy doping.Adv Mater,2018,30:1705942
    38 Liu Z,Sun J,Mao J,et al.Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping.Proc Natl Acad Sci USA,2018,115:5332-5337
    39 Liu X,Zhu T,Wang H,et al.Low electron scattering potentials in high performance Mg2Si0.45Sn0.55based thermoelectric solid solutions with band convergence.Adv Energy Mater,2013,3:1238-1244
    40 Fu C,Zhu T,Pei Y,et al.High band degeneracy contributes to high thermoelectric performance in p-type half-Heusler compounds.Adv Energy Mater,2014,4:1400600
    41 Ren Y,Yang J,Jiang Q,et al.Synergistic effect by Na doping and Ssubstitution for high thermoelectric performance of p-type MnTe.J Mater Chem C,2017,5:5076-5082
    42 Xu Y,Li W,Wang C,et al.Performance optimization and single parabolic band behavior of thermoelectric MnTe.J Mater Chem A,2017,5:19143-19150
    43 Dudkin L,Kolomoets,N,Melikhova,A,et al.Influence of heattreatment on the structure and electrophysical properties of alloys GeTe-MnTe.Inorg Mater,1979,15:166-169
    44 Zhang Y,Wu L,Zhang J,et al.Eutectic microstructures and thermoelectric properties of MnTe-rich precipitates hardened PbTe.Acta Mater,2016,111:202-209
    45 Fukuma Y,Asada H,Arifuku M,et al.Carrier-enhanced ferromagnetism in Ge1-xMnxTe.Appl Phys Lett,2002,80:1013-1015
    46 Knoff W,Domukhovski V,Dybko K,et al.Ferromagnetic transition in Ge1-xMnxTe layers.Acta Phys Pol A,2009,116:904-906
    47 Zhou Z,Uher C.Apparatus for Seebeck coefficient and electrical resistivity measurements of bulk thermoelectric materials at high temperature.Rev Sci Instruments,2005,76:023901
    48 Hazan E,Madar N,Parag M,et al.Effective electronic mechanisms for optimizing the thermoelectric properties of GeTe-Rich alloys.Adv Electron Mater,2015,1:1500228
    49 Fahrnbauer F,Souchay D,Wagner G,et al.High thermoelectric figure of merit values of germanium antimony tellurides with kinetically stable cobalt germanide precipitates.J Am Chem Soc,2015,137:12633-12638
    50 Li J,Wu H,Wu D,et al.Extremely low thermal conductivity in thermoelectric Ge0.55Pb0.45Te solid solutions via Se substitution.Chem Mater,2016,28:6367-6373
    51 Goldsmid HJ,Sharp JW.Estimation of the thermal band gap of a semiconductor from seebeck measurements.J Elec Materi,1999,28:869-872
    52 Zheng Z,Su X,Deng R,et al.Rhombohedral to cubic conversion of GeTe via MnTe alloying leads to ultralow thermal conductivity,electronic band convergence,and high thermoelectric performance.J Am Chem Soc,2018,140:2673-2686
    53 Ravich YI,Efimova BA,Smirnov IA.Semiconducting lead chalcogenides.Berlin:Plenum Press,1970:
    54 Shen J,Chen Z,lin S,et al.Single parabolic band behavior of thermoelectric p-type CuGaTe2.J Mater Chem C,2016,4:209-214
    55 Li W,Lin S,Zhang X,et al.Thermoelectric properties of Cu2SnSe4with intrinsic vacancy.Chem Mater,2016,28:6227-6232
    56 Pei Y,LaLonde AD,Heinz NA,et al.Stabilizing the optimal carrier concentration for high thermoelectric efficiency.Adv Mater,2011,23:5674-5678
    57 Sanditov DS,Belomestnykh VN.Relation between the parameters of the elasticity theory and averaged bulk modulus of solids.Tech Phys,2011,56:1619-1623
    58 Lin S,Li W,Zhang X,et al.Sb induces both doping and precipitation for improving the thermoelectric performance of elemental Te.Inorg Chem Front,2017,4:1066-1072
    59 Cahill DG,Watson SK,Pohl RO.Lower limit to the thermal conductivity of disordered crystals.Phys Rev B,1992,46:6131-6140
    60 Zhao LD,Zhang BP,Li JF,et al.Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3fabricated by mechanical alloying and spark plasma sintering.J Alloys Compd,2008,455:259-264
    61 Cui JL,Qian X,Zhao XB.Mechanical and transport properties of pseudo-binary alloys(PbTe)1-x-(SnTe)xby pressureless sintering.JAlloys Compd,2003,358:228-234
    62 MS DARROW WBW,R ROY.Micro-indentation hardness variation as a function of composition for polycrystalline solutions in the systems PbS/PbTe,PbSe/PbTe,and PbS/PbSe.J Mater Sci Technol,1969,313-319
    63 Zhao L,Wang X,Fei FY,et al.High thermoelectric and mechanical performance in highly dense Cu2-xS bulks prepared by a meltsolidification technique.J Mater Chem A,2015,3:9432-9437
    64 Perumal S,Roychowdhury S,Negi DS,et al.High thermoelectric performance and enhanced mechanical stability of p-type Ge1-xSbxTe.Chem Mater,2015,27:7171-7178
    65 Banik A,Vishal B,Perumal S,et al.The origin of low thermal conductivity in Sn1-xSbxTe:phonon scattering via layered intergrowth nanostructures.Energy Environ Sci,2016,9:2011-2019
    66 Davidow J,Gelbstein Y.A comparison between the mechanical and thermoelectric properties of three highly efficient p-type GeTe-rich compositions:TAGS-80,TAGS-85,and 3%Bi2Te3-doped Ge0.87Pb0.13Te.J Elec Materi,2012,42:1542-1549
    67 Perumal S,Roychowdhury S,Biswas K.Reduction of thermal conductivity through nanostructuring enhances the thermoelectric figure of merit in Ge1-xBixTe.Inorg Chem Front,2016,3:125-132
    68 Rogl G,Grytsiv A,Gürth M,et al.Mechanical properties of halfHeusler alloys.Acta Mater,2016,107:178-195
    69 Zhang L,Rogl G,Grytsiv A,et al.Mechanical properties of filled antimonide skutterudites.Mater Sci Eng-B,2010,170:26-31
    70 Perumal S,Roychowdhury S,Biswas K.High performance thermoelectric materials and devices based on GeTe.J Mater Chem C,2016,4:7520-7536

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700