刀鲚胚胎及胚后发育早期脂肪酸组成变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Changes in Fatty Acid Compositions during Embryonic and Early Post-embryonic Development of Coilia nasus
  • 作者:施永海 ; 刘永士 ; 严银龙 ; 张海明 ; 谢永德 ; 于爱清
  • 英文作者:SHI Yong-Hai;LIU Yong-Shi;YAN Yin-Long;ZHANG Hai-Ming;XIE Yong-De;YU Ai-Qing;Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station;
  • 关键词:刀鲚 ; 胚胎 ; 仔鱼 ; 脂肪酸
  • 英文关键词:Coilia nasus;;Embryo;;Larvae;;Fatty acid
  • 中文刊名:BIRD
  • 英文刊名:Chinese Journal of Zoology
  • 机构:上海市水产研究所上海市水产技术推广站;
  • 出版日期:2019-06-03
  • 出版单位:动物学杂志
  • 年:2019
  • 期:v.54
  • 基金:上海市科学技术委员会重点科技攻关项目(No.17391900300,13DZ2251800);; 国家公益性行业(农业)科研专项(No.201203065);; 上海市农业领军人才项目(沪委农办2018-60号)
  • 语种:中文;
  • 页:BIRD201903014
  • 页数:11
  • CN:03
  • ISSN:11-1830/Q
  • 分类号:107-117
摘要
为掌握刀鲚(Coilia nasus)胚胎及胚后发育早期的脂肪酸变化规律,采用生化分析手段对刀鲚的胚胎(原肠期,受精后7~9 h)、0日龄仔鱼(初孵仔鱼)、3日龄仔鱼和5日龄仔鱼(开口前)的脂肪酸组成和含量进行了检测分析。结果显示,刀鲚发育早期的总脂占干物质的相对含量均较高(53.10%~60.97%),干物质的总脂相对含量随个体发育显著降低,单个个体的总脂含量随个体发育呈现剧烈下降趋势,数值从胚胎的43.62μg/ind剧烈下降到5日龄仔鱼的16.27μg/ind;水分含量随个体发育而升高。刀鲚发育早期上述4个时期的干样中检出6种饱和脂肪酸(SFA)、4种单不饱和脂肪酸(MUFA)和8种多不饱和脂肪酸(PUFA)。4个发育时期脂肪酸相对含量,C18:1n9c占绝对优势(50.39%~57.00%),C16:1丰富且稳定(13.77%~14.24%),C16:0也较丰富(7.45%~9.15%)。单不饱和脂肪酸(MUFA)比例占绝对优势(65.14%~72.26%),n-3与n-6系列多不饱和脂肪酸含量的比值(∑n3PUFA/∑n6PUFA)较小(1.78~2.38)。刀鲚胚胎孵化出膜期间,单个个体单不饱和脂肪酸(MUFA)实际减少程度较高,尤其是C18:1n9c(减少量为13.21μg/ind,减少比例达到55.49%)和C16:1(减少量和比例分别为3.30μg/ind和53.12%),而二十碳五烯酸(EPA)加二十二碳六烯酸(DHA)的减少程度较低(1.44μg/ind和38.41%),尤其是DHA(0.95μg/ind和36.52%)。然而,出膜后,仔鱼对单不饱和脂肪酸(MUFA)的利用相对较低(1.94μg/ind和14.17%),尤其是C18:1n9c(13.21μg/ind和12.41%)和C16:1(0.63μg/ind和21.81%);而对EPA+DHA利用相对较高(1.04μg/ind和45.10%),尤其是DHA(0.71μg/ind和42.61%)。研究表明,刀鲚胚胎优先蓄留EPA和DHA,仔鱼在摄食前大量利用EPA+DHA(特别是DHA),呈现出海水鱼类脂肪酸的利用特点。因此,建议在刀鲚亲本强化培育及产后培育中,增加投喂富含单不饱和脂肪酸(MUFA)(特别是C18:1和C16:1)的饵料,以加强刀鲚亲本的营养积累和产卵后亲本生理机能的恢复;在刀鲚育苗前期,要及时补充富含DHA和EPA的饵料,如,单胞藻、蛋黄等,以提高刀鲚仔鱼开口期间的成活率。
        Coilia nasus is an anadromous fish species with commercial importance and high market value in China, and it has a potential for aquaculture. In order to understand the value of changes in fatty acid compositions during embryonic and early post-embryonic development of C. nasus, the fatty acid compositions and contents at different developmental stages(embryos at 7-9 h of fertilization, newly hatched larvae at the age of 0-day, larvae at the age of 3-day, and larvae at the age of 5-day before feeding)were collected and analyzed by biochemical analysis methods. The experimental data were statistically analyzed with variance analysis. The results showed that the total lipid percent contents of C. nasus larvae at different developmental stages were high(53.10%-60.97%, Table 1), while decreased significantly with ontogenesis(P < 0.05, Table 1). The individual total lipid percent contents decreased sharply with ontogenesis(P < 0.05), and the value dropped dramatically from 43.62 μg/ind in embryos to 16.27 μg/ind in 5-day-old larvae(Table 1); while, the moisture increased significantly with ontogenesis(P < 0.05, Table 1). A total of 6 saturated fatty acids(SFA), 4 mono-unsaturated fatty acids(MUFA), and 8 poly-unsaturated fatty acids(PUFA) were found in the dry sample at different developmental stages(Table 2). The C18:1n9c content of C.nasus was the highest and had an absolute advantage at different developmental stages(50.39%-57.00%, P <0.05, Table 2), the C16:1 content was rich and stable(13.77%-14.24%, P > 0.05, Table 2), the C16:0 content was also rich(7.45%-9.15%)(Table 2). Simultaneously, the MUFA had an absolute advantage(65.14%-72.26%), the ratio of n-3 series poly-unsaturated fatty acids( ∑n3PUFA)/n-6 series poly-unsaturated fatty acids(∑n6PUFA) was low(1.78-2.38)(Table 2). During the incubation period, the degree of actual reduction of MUFA was higher, especially in C18:1n9c(13.21 μg/ind and 55.49%) and C16:1(3.30 μg/ind and 53.12%)(Fig. 2), while, the degree of actual reduction of C20:5 n3(eicosapentaenoic acid, EPA) + C22:6 n3(docosahexenoic acid, DHA) was lower(1.44 μg/ind and 38.41%), especially in DHA(0.95 μg/ind and 36.52%, Fig. 2). After hatch, at the endogenous feeding stage, the utilization rate of MUFA was lower(1.94 μg/ind and 14.17%), especially in C18:1n9c(13.21 μg/ind and 12.41%) and C16:1(0.63μg/ind and 21.81%, Fig. 3), while the utilization rate of EPA + DHA was higher(1.04 μg/ind and 45.10%),especially in DHA(0.71 μg/ind and 42.61%, Fig. 3). Therefore, EPA+DHA are preserved by priority during the C. nasus embryo incubation period, EPA + DHA(especially DHA) are largely consumed before the C.nasus larvae feeding, which is close to the fatty acids utilization characteristics of freshwater fish. In antepartum and postpartum cultivation of C. nasus brood stock, in order to improve the nutrition accumulation of brood stock and the recovery of physiological function of postpartum brood stock, diets enriched with the MUFA(especially C18:1 and C16:1) is suggested. In early larval breeding of C. nasus, in order to improve the survival rate of larvae, diets enriched with DHA and EPA(e.g., porphyridiophyceae and yolk) is also suggested.
引文
Gunasekera R M,De Silva S S,Ingram B A.2001.Chemical changes in fed and starved larval trout cod,Maccullochella macquarensis during early development.Fish Physiology and Biochemistry,25(4):255-268.
    Mourente G,Váquez R.1996.Changes in the content of total lipid,lipid classes and their fatty acids of developing eggs and unfed larvae of the Senegal sole,Solea senegalensis Kaup.Fish Physiology and Biochemistry,15(3):221-235.
    Tocher D R,Harvie D G.1998.Fatty acid compositions of the major phosphoglycerides from fish neural tissues;(n-3)and(n-6)polyunsaturated fatty acids in rainbow trout(Salmo gairdneri)and cod(Gadus morhua)brains and retinas.Fish Physiology and Biochemistry,5(4):229-239.
    Xu J B,Deng P P,Shi Y H,et al.2016.Effect of salinity on the survival and growth of the larvae and juveniles of Japanese grenadier anchovy Coilia nasus.North American Journal of Aquaculture,78(1):1-7.
    黄旭雄,冯隆峰,温文,等.2013.日本鬼鲉胚胎及卵黄囊仔鱼发育过程中脂肪及脂肪酸特性变化.水产学报,37(4):526-535.
    李玉琪,陶宁萍,朱文倩,等.2015.产卵前后长江刀鲚肉中营养成分差异.食品工业科技,36(15):338-346.
    刘镜恪,陈晓琳.2002.海水仔稚鱼的必需脂肪酸-n-3系列高度不饱和脂肪酸研究概况.青岛海洋大学学报,32(6):897-902.
    刘凯,段金荣,徐东坡,等.2009.长江下游产卵期凤鲚、刀鲚和湖鲚肌肉生化成分及能量密度.动物学杂志,44(4):118-124.
    卢素芳,赵娜,刘华斌,等.2008.黄颡鱼早期发育阶段受精卵和鱼体脂肪酸组成变化.水产学报,32(5):711-716.
    施永海,徐嘉波,刘永士,等.2017.菊黄东方鲀发育早期的脂肪酸组成变化.水产学报,41(8):1203-1212.
    施永海,张根玉,张海明,等.2014.配合饲料和活饵料喂养刀鲚肌肉营养品质分析与比较.动物营养学报,26(2):427-436.
    施永海,张根玉,张海明,等.2015.刀鲚的全人工繁殖及胚胎发育.上海海洋大学学报,24(1):36-43.
    唐雪,徐钢春,徐跑,等.2011.野生与养殖刀鲚肌肉营养成分的比较分析.动物营养学报,23(3):514-520.
    王丹丽,徐善良,严小军,等.2006.大黄鱼仔、稚、幼鱼发育阶段的脂肪酸组成及其变化.水产学报,30(2):241-245.
    王桂学,刘凯,徐东坡,等.2009.凤鲚、湖鲚和刀鲚卵巢氨基酸、脂肪酸及矿物元素分析.广东海洋大学学报,29(3):86-89.
    徐钢春,顾若波,张呈祥,等.2009.刀鲚两种生态类群--“江刀”和“海刀”鱼肉营养组成的比较及品质的评价.海洋渔业,31(4):401-409.
    徐善良,王亚军,王丹丽,等.2013.条石鲷(Oplegnathus fasciatus)发育早期的脂肪酸组成变化研究.海洋与湖沼,44(2):438-444.
    朱邦科,曹文宣.2002.鲢早期发育阶段鱼体脂肪酸组成变化.水生生物学报,26(2):130-135.
    朱栋良.1992.长江刀鱼的天然繁殖与胚胎发育观察.水产科技情报,19(2):49-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700