A multiplatform metabolomic approach to characterize fecal signatures of negative postnatal events in chicks: a pilot study
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A multiplatform metabolomic approach to characterize fecal signatures of negative postnatal events in chicks: a pilot study
  • 作者:Stéphane ; Beauclercq ; Antoine ; Lefèvre ; Frédéric ; Montigny ; Anne ; Collin ; Sophie ; Tesseraud ; Christine ; Leterrier ; Patrick ; Emond ; Laurence ; A.Guilloteau
  • 英文作者:Stéphane Beauclercq;Antoine Lefèvre;Frédéric Montigny;Anne Collin;Sophie Tesseraud;Christine Leterrier;Patrick Emond;Laurence A.Guilloteau;BOA, INRA, Université de Tours;Université de Tours,PST Analyse des systèmes biologiques;PRC, INRA, CNRS,Université de Tours;UMR 1253, i Brain,Université de Tours,Inserm;CHRU de Tours, Service de Médecine Nucléaire In Vitro;
  • 英文关键词:Biomarker;;Chick;;Feces;;GC-MS;;LC-HRMS;;Negative postnatal event
  • 中文刊名:XMSW
  • 英文刊名:畜牧与生物技术杂志(英文版)
  • 机构:BOA, INRA, Université de Tours;Université de Tours,PST Analyse des systèmes biologiques;PRC, INRA, CNRS,Université de Tours;UMR 1253, i Brain,Université de Tours,Inserm;CHRU de Tours, Service de Médecine Nucléaire In Vitro;
  • 出版日期:2019-06-15
  • 出版单位:Journal of Animal Science and Biotechnology
  • 年:2019
  • 期:v.10
  • 基金:supported financially by a “crédits incitatifs” grant from the department of Animal Physiology and Livestock Systems(PHASE)at INRA;; a grant from the Integrated Management of Animal Health metaprogram of INRA for the “GISA-WHELP” project(www.gisa.inra.fr/en)
  • 语种:英文;
  • 页:XMSW201902015
  • 页数:11
  • CN:02
  • ISSN:11-5967/S
  • 分类号:174-184
摘要
Background: Negative experiences in early life can induce long-lasting effects on the welfare, health, and performance of farm animals. A delayed placement of chicks in rearing houses has negative effects on their performance, and results in fecal-specific odors detectable by rats. Based on this observation, the volatile organic compounds(VOCs) and metabolites from the feces of 12-day-old chickens were screened for early markers of response to negative events using gas-chromatography and liquid-chromatography coupled with mass spectrometry(GC-MS, LC-HRMS).Results: The low reproducibility of solid-phase micro-extraction of the VOCs followed by GC-MS was not suitable for marker discovery, in contrast to liquid extraction of metabolites from freeze-dried feces followed by GC-MS or LC-HRMS analysis. Therefore, the fecal metabolome from 12-day-old chicks having experienced a normal or delayed placement were recorded by GC-MS and LC-HRMS in two genotypes from two experiments. From both experiments, 25 and 35 metabolites, respectively explaining 81% and 45% of the difference between delayed and control chickens, were identified by orthogonal partial least-squares discriminant analysis from LC-HRMS and GC-MS profiling.Conclusion: The sets of molecules identified will be useful to better understand the chicks' response to negative events over time and will contribute to define stress or welfare biomarkers.
        Background: Negative experiences in early life can induce long-lasting effects on the welfare, health, and performance of farm animals. A delayed placement of chicks in rearing houses has negative effects on their performance, and results in fecal-specific odors detectable by rats. Based on this observation, the volatile organic compounds(VOCs) and metabolites from the feces of 12-day-old chickens were screened for early markers of response to negative events using gas-chromatography and liquid-chromatography coupled with mass spectrometry(GC-MS, LC-HRMS).Results: The low reproducibility of solid-phase micro-extraction of the VOCs followed by GC-MS was not suitable for marker discovery, in contrast to liquid extraction of metabolites from freeze-dried feces followed by GC-MS or LC-HRMS analysis. Therefore, the fecal metabolome from 12-day-old chicks having experienced a normal or delayed placement were recorded by GC-MS and LC-HRMS in two genotypes from two experiments. From both experiments, 25 and 35 metabolites, respectively explaining 81% and 45% of the difference between delayed and control chickens, were identified by orthogonal partial least-squares discriminant analysis from LC-HRMS and GC-MS profiling.Conclusion: The sets of molecules identified will be useful to better understand the chicks' response to negative events over time and will contribute to define stress or welfare biomarkers.
引文
1.Ericsson M,Henriksen R,Bélteky J,Sundman A-S,Shionoya K,Jensen P.Long-term and transgenerational effects of stress experienced during different life phases in chickens(Gallus gallus).PLoS One.2016;11:e0153879.https://doi.org/10.1371/journal.pone.0153879.
    2.Goerlich VC,N?tt D,Elfwing M,Macdonald B,Jensen P.Transgenerational effects of early experience on behavioral,hormonal and gene expression responses to acute stress in the precocial chicken.Horm Behav.2012;61:711-8.https://doi.org/10.1016/J.YHBEH.2012.03.006.
    3.Bergoug H,Guinebretiere M,Tong Q,Roulston N,Romanini CEB,Exadaktylos V,et al.Effect of transportation duration of 1-day-old chicks on postplacement production performances and pododermatitis of broilers up to slaughter age.Poult Sci.2013;92:3300-9.https://doi.org/10.3382/ps.2013-03118.
    4.Bigot K,Mignon-Grasteau S,Picard M,Tesseraud S.Effects of delayed feed intake on body,intestine,and muscle development in neonate broilers.Poult Sci.2003;82:781-8.https://doi.org/10.1093/ps/82.5.781.
    5.Shakeel I,Khan AA,Qureshi S,Adil S,Wani BM,Din MM,et al.Stress levels,mortality,intestinal morphometry and Histomorphology of Chabro broiler birds subjected to varying degrees of post hatch delay in feeding.Pakistan J Biol Sci.2016;19:331-7.https://doi.org/10.3923/pjbs.2016.331.337.
    6.Di Lena M,Porcelli F,Altomare DF.Volatile organic compounds as new biomarkers for colorectal cancer:a review.Color Dis.2016;18:654-63.https://doi.org/10.1111/codi.13271.
    7.Baranska A,Mujagic Z,Smolinska A,Dallinga JW,Jonkers DMAE,Tigchelaar EF,et al.Volatile organic compounds in breath as markers for irritable bowel syndrome:a metabolomic approach.Aliment Pharmacol Ther.2016;44:45-56.https://doi.org/10.1111/apt.13654.
    8.Martin HJ,Turner MA,Bandelow S,Edwards L,Riazanskaia S,Thomas CLP.Volatile organic compound markers of psychological stress in skin:a pilot study.J Breath Res.2016;10:046012.https://doi.org/10.1088/1752-7155/10/4/046012.
    9.Garner CE,Smith S,Elviss NC,Humphrey TJ,White P,Ratcliffe NM,et al.Identification of Campylobacter infection in chickens from volatile faecal emissions.Biomarkers.2008;13:413-21.https://doi.org/10.1080/13547500801966443.
    10.Goldansaz SA,Guo AC,Sajed T,Steele MA,Plastow GS,Wishart DS.Livestock metabolomics and the livestock metabolome:a systematic review.PLoS One.2017;12:e0177675.https://doi.org/10.1371/journal.pone.0177675.
    11.Beauclercq S,Nadal-Desbarats L,Hennequet-Antier C,Collin A,Tesseraud S,Bourin M,et al.Serum and muscle metabolomics for the prediction of ultimate pH,a key factor for chicken-meat quality.J Proteome Res.2016;15:1168-78.https://doi.org/10.1021/acs.jproteome.5b01050.
    12.Beauclercq S,Nadal-Desbarats L,Hennequet-Antier C,Gabriel I,Tesseraud S,Calenge F,et al.Relationships between digestive efficiency and metabolomic profiles of serum and intestinal contents in chickens.Sci Rep.2018;8:6678.https://doi.org/10.1038/s41598-018-24978-9.
    13.Zampiga M,Flees J,Meluzzi A,Dridi S,Sirri F.Application of omics technologies for a deeper insight into quali-quantitative production traits in broiler chickens:a review.J Anim Sci Biotechnol.2018;9:61.https://doi.org/10.1186/s40104-018-0278-5.
    14.Bombail V,Barret B,Raynaud A,Jer?me N,Saint-Albin A,Ridder C,et al.In search of stress odours across species:behavioural responses of rats to faeces from chickens and rats subjected to various types of stressful events.Appl Anim Behav Sci.2017.https://doi.org/10.1016/J.APPLANIM.2017.10.013.
    15.Sakuma K,Hayashi S,Yasaka Y,Nishijima H,Funabashi H,Hayashi M,et al.Analysis of odor compounds in feces of mice that were exposed to various stresses during.breeding.Exp Anim.2013;62:101-7.
    16.Bijland LR,Bomers MK,Smulders YM.Smelling the diagnosis:a review on the use of scent in diagnosing disease.Neth J Med.2013;71:300-7.
    17.Sheriff MJ,Krebs CJ,Boonstra R.Assessing stress in animal populations:do fecal and plasma glucocorticoids tell the same story?Gen Comp Endocrinol.2010;166:614-9..
    18.Dehnhard M,Schreer A,Krone O,Jewgenow K,Krause M,Grossmann R.Measurement of plasma corticosterone and fecal glucocorticoid metabolites in the chicken(Gallus domesticus),the great cormorant(Phalacrocorax carbo),and the goshawk(Accipiter gentilis).Gen Comp Endocrinol.2003;131:345-52.https://doi.org/10.1016/S0016-6480(03)00033-9.
    19.Guilloteau L,Collin A,Koch A,Leterrier C.Spontaneous intake and longterm effects of essential oils after a negative postnatal experience in chicks.bioRxiv.2018:452136.https://doi.org/10.1101/452136.
    20.Rahimi S,Esmaeilzadeh L,Karimi Torshizi MA.Comparison of growth performance of six commercial broiler hybrids in Iran.Shiraz Univ.2006;7:38-44.https://doi.org/10.22099/IJVR.2006.2661.
    21.Vas G,Vékey K.Solid-phase microextraction:a powerful sample preparation tool prior to mass spectrometric.analysis.J Mass Spectrom.2004;39:233-54.
    22.DiéméB,Lefèvre A,Nadal-Desbarats L,Galineau L,Madji Hounoum B,Montigny F,et al.Workflow methodology for rat brain metabolome exploration using NMR,LC-MS and GC-MS analytical platforms.J Pharm Biomed Anal.2017;142:270-8.https://doi.org/10.1016/j.jpba.2017.03.068.
    23.Emond P,Mavel S,A?doud N,Nadal-Desbarats L,Montigny F,Bonnet-Brilhault F,et al.GC-MS-based urine metabolic profiling of autism spectrum disorders.Anal Bioanal Chem.2013;405:5291-300.https://doi.org/10.1007/s00216-013-6934-x.
    24.Want EJ,Masson P,Michopoulos F,Wilson ID,Theodoridis G,Plumb RS,et al.Global metabolic profiling of animal and human tissues via UPLC-MS.Nat Protoc.2012;8:17-32.https://doi.org/10.1038/nprot.2012.135.
    25.Wishart DS,Feunang YD,Marcu A,Guo AC,Liang K,Vázquez-Fresno R,et al.HMDB 4.0:the human metabolome database for 2018.Nucleic Acids Res.2018;46:D608-17.https://doi.org/10.1093/nar/gkx1089.
    26.Sumner LW,Amberg A,Barrett D,Beale MH,Beger R,Daykin CA,et al.Proposed minimum reporting standards for chemical analysis.Metabolomics.2007;3:211-21.https://doi.org/10.1007/s11306-007-0082-2.
    27.Bitar T,Mavel S,Emond P,Nadal-Desbarats L,Lefèvre A,Mattar H,et al.Identification of metabolic pathway disturbances using multimodal metabolomics in autistic disorders in a middle eastern population.J Pharm Biomed Anal.2018;152:57-65.https://doi.org/10.1016/J.JPBA.2018.01.007.
    28.Jackson JE.A user’s guide to principal components.Hoboken:Wiley;1991.
    29.Trygg J,Wold S.Orthogonal projections to latent structures(O-PLS).JChemom.2002;16:119-28.https://doi.org/10.1002/cem.695.
    30.Eriksson L,Trygg J,Wold S.CV-ANOVA for significance testing of PLS and OPLSmodels.J Chemom.2008;22:594-600.https://doi.org/10.1002/cem.1187.
    31.Kanehisa M,Goto S.KEGG:Kyoto encyclopedia of genes and genomes.Nucleic Acids Res.2000;28:27-30.https://doi.org/10.1093/nar/28.1.27.
    32.Reade S,Mayor A,Aggio R,Khalid T,Pritchard D,Ewer A,et al.Optimisation of sample preparation for direct SPME-GC-MS analysis of murine and human Faecal volatile organic compounds for Metabolomic studies.J Anal Bioanal Tech.2014;5.https://doi.org/10.4172/2155-9872.1000184.
    33.Burton RA,Fincher GB.Evolution and development of cell walls in cereal grains.Front Plant Sci.2014;5:456..
    35.Sánchez-Hernández L,Puchalska P,García-Ruiz C,Crego AL,Marina ML.Determination of Trigonelline in seeds and vegetable oils by capillary electrophoresis as a novel marker for the detection of adulterations in olive oils.J Agric Food Chem.2010;58:7489-96.https://doi.org/10.1021/jf100550b.
    36.Vernocchi P,Del Chierico F,Putignani L.Gut microbiota profiling:metabolomics based approach to unravel compounds affecting human health.Front Microbiol.2016;7:1144.https://doi.org/10.3389/fmicb.2016.01144.
    37.Dai Z,Wu Z,Hang S,Zhu W,Wu G.Amino acid metabolism in intestinal bacteria and its potential implications for mammalian reproduction.Mol Hum.Reprod.2015;21:389-409.
    38.Galland L.The gut microbiome and the brain.J Med Food.2014;17:1261-
    72.https://doi.org/10.1089/jmf.2014.7000.
    39.Dennis RL.Adrenergic and noradrenergic regulation of poultry behavior and production.Domest Anim Endocrinol.2016;56:S94-100.https://doi.org/10.1016/J.DOMANIEND.2016.02.007.
    40.Pruessner JC,Champagne F,Meaney MJ,Dagher A.Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care:a positron emission tomography study using[11C]Raclopride.J Neurosci.2004;24:2825-31.
    41.Cheng H,Singleton P,Muir W.Social stress in laying hens:differential effect of stress on plasma dopamine concentrations and adrenal function in genetically selected chickens.Poult Sci.2003;82:192-8..
    42.Bureau C,Hennequet-Antier C,Couty M,GuémenéD.Gene array analysis of adrenal glands in broiler chickens following ACTH treatment.BMCGenomics.2009;10:430.https://doi.org/10.1186/1471-2164-10-430.
    43.L?tvedt P,Fallahshahroudi A,Bektic L,Altimiras J,Jensen P.Chicken domestication changes expression of stress-related genes in brain,pituitary and adrenals.Neurobiol Stress.2017;7:113-21.
    44.Wu G..Amino acids:metabolism,functions,and nutrition.Amino Acids.2009;37:1-17.https://doi.org/10.1007/s00726-009-0269-0.
    45.Li Q,Cui J,Fang C,Liu M,Min G,Li L.S-Adenosylmethionine attenuates oxidative stress and Neuroinflammation induced by amyloid-βthrough modulation of glutathione metabolism.J Alzheimers Dis.2017;58:549-58.https://doi.org/10.3233/JAD-170177.
    46.Yadgary L,Cahaner A,Kedar O,Uni Z.Yolk sac nutrient composition and fat uptake in late-term embryos in eggs from young and old broiler breeder.hens.Poult Sci.2010;89:2441-52.
    47.Rojas-Morales P,Tapia E,Pedraza-Chaverri J.β-Hydroxybutyrate:a signaling metabolite in starvation response?Cell Signal.2016;28:917-23..48.Yang X,Zhuang J,Rao K,Li X,Zhao R.Effect of early feed restriction on hepatic lipid metabolism and expression of lipogenic genes in broiler chickens.Res Vet Sci.2010;89:438-44.https://doi.org/10.1016/J.RVSC.2010.04.003.
    49.Letto J,Brosnan ME,Brosnan JT.Valine metabolism.Gluconeogenesis from3-hydroxyisobutyrate.Biochem J.1986;240:909-12.
    50.Lin G,Himes J,Cornelius C.Bilirubin and biliverdin excretion by the chicken.Am JPhysiol Content.1974;226:881-5.https://doi.org/10.1152/ajplegacy.1974.226.4.881.
    51.Hamoud A-R,Weaver L,Stec DE,Hinds TD.Bilirubin in the liver-gut signaling Axis.Trends Endocrinol Metab.2018;29:140-50.
    52.Harr KE.Clinical chemistry of companion avian species:a review.Vet Clin Pathol.2002;31:140-51.https://doi.org/10.1111/j.1939-165X.2002.tb00295.x.
    53.Kim J,Darley D,Selmer T,Buckel W.Characterization of(R)-2-Hydroxyisocaproate dehydrogenase and a family III coenzyme a transferase involved in reduction of L-leucine to Isocaproate by Clostridium difficile.Appl Environ Microbiol.2006;72:6062-9.
    54.Dai Z-L,Wu G,Zhu W-Y.Amino acid metabolism in intestinal bacteria:links between gut ecology and host health.Front Biosci(Landmark Ed).2011;16:1768-86 http://www.ncbi.nlm.nih.gov/pubmed/21196263.Accessed 8 Apr 2018.
    55.Li Z,Wang W,Liu D,Guo Y.Effects of lactobacillus acidophilus on gut microbiota composition in broilers challenged with Clostridium perfringens.PLoS One.2017;12:e0188634.https://doi.org/10.1371/journal.pone.0188634.
    34.Rothwell JA,Perez-Jimenez J,Neveu V,Medina-Remón A,M’hiri N,GarcíaLobato P,et al.Phenol-explorer 3.0:a major update of the phenol-explorer database to incorporate data on the effects of food processing on polyphenol content.Database(Oxford).2013;2013:bat070.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700