基于复合材料铺层的兆瓦级风力机叶片结构性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Performance Analysis of Megawatt Wind Turbine Blade Structure based on Composite Material Layers
  • 作者:孙瑞 ; 李春 ; 陈文朴
  • 英文作者:SUN Rui;LI Chun;CHEN Wenpu;School of Energy and Power Engineering, University of Shanghai for Science and Technology;Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering;
  • 关键词:复合材料 ; 风力机叶片 ; 模态 ; 屈曲 ; 流固耦合
  • 英文关键词:composite material;;wind turbine blade;;modal;;bulking;;fluid-structure coupling
  • 中文刊名:CLKX
  • 英文刊名:Journal of Materials Science and Engineering
  • 机构:上海理工大学能源与动力工程学院;上海市动力工程多相流动与传热重点实验室;
  • 出版日期:2019-04-20
  • 出版单位:材料科学与工程学报
  • 年:2019
  • 期:v.37;No.178
  • 基金:国家自然科学基金资助项目(51676131,51176129)
  • 语种:中文;
  • 页:CLKX201902017
  • 页数:6
  • CN:02
  • ISSN:33-1307/T
  • 分类号:91-95+137
摘要
采用参数化建模,建立多种复合材料叶片三维有限元壳体模型,并对叶片进行模态分析。进一步采用流固耦合方法,实现叶片表面气动载荷加载,对额定工况下的叶片进行屈曲分析。以初步设计的5MW风力机叶片为例,研究结果表明:复合材料具有明显的各向异性;铺层纤维角度影响叶片整体固有频率,合理的铺层结构可使叶片低阶固有频率远离激振频率,防止叶片发生共振破坏;复合材料铺层叶片在额定工况下不会发生整体屈曲破坏,但因复合材料抗拉抗压性能不同,在压缩载荷作用下叶片背风面几何突变区出现局部屈曲,在叶片设计制造时应该充分加以考虑,以防止局部屈曲破坏。
        Parametric modeling technique is developed to build the three-dimensional finite element shell model of a preliminarily designed large scale wind turbine composite blade. The aerodynamic load on the blade surface was calculated by fluid-structure coupling method, and the buckling of composite blades under the rated condition was carried out. Taking the blade of 5 MW wind turbine for example, the results show that proper composite ply structure has the obvious anisotropy. The angle of the ply fibers affects the inherent frequency of the whole blade. The reasonable ply structure can keep the inherent frequency of blades far away from the excitation frequency and prevent the resonance of blades. Composite blades cannot fail by buckling at the rated condition. However, under the compressive load, local buckling appears in the geometric mutation area of blades, because of the difference between tensile and compressive properties of the composite materials. In blade design and manufacture, local buckling should be taken into consideration to prevent local buckling failure.
引文
[1] 何玉林,冯博,杜静.风力发电机组复合材料机舱罩的有限元分析[J].材料科学与工程学报,2011,28(2):258~262.
    [2] Yang J,Peng C,et al.Application of videometric technique to deformation measurement for large-scale composite wind turbine blade[J].Applied Energy,2012,98(1):292~300.
    [3] 张建川,张前峰,蔡红军.风力发电复合材料叶片废弃物的几种处理方法分析[J].材料科学与工程学报,2012,30(3):473~482.
    [4] Li L,Li Y H,Lv H W,et al.Flapwise dynamic response of a wind turbine blade in super-harmonic resonance[J].Journal of Sound & Vibration,2012,331(17):4025~4044.
    [5] 陈文朴,李春,叶舟,等.基于流固耦合的风力机叶片结构稳定性分析[J].水资源与水工程学报,2016,27(4):179~183.
    [6] Hull D.An introduction to composite materials [M].Cambridge:Cambridge University Press,1981:44~49.
    [7] Gangele A,Ahmed S.Modal analysis of S809 wind turbine blade considering different geometrical and material parameters[J].Journal of the Institution of Engineers,2013,94(3):225~228.
    [8] Griffith D T,Carne T G.Experimental modal analysis of 9-meter research-sized wind turbine blades[M].New York:Springer,2011:98~100.
    [9] Yin J,Xie Y,Chen P.Modal analysis Comparison of beam and shell models for composite blades[C].Wuhan:Asia-Pacific Power and Energy Engineering Conference.IEEE,2009:1~4.
    [10] Liu W,Su X Y,An Y R,et al.Local buckling prediction for large wind turbine blades[J].Computers Materials & Continua,2011,25(2):177.
    [11] Haselbach P U,Bitsche R D,Branner K.The effect of delaminations on local buckling in wind turbine blades[J].Renewable Energy,2016,85:295~305.
    [12] Jonkman J,Butterfield S,Musial W,et al.Definition of a 5MW reference wind turbine for offshore system development[R].Colorado:Office of Scientific & Technical Information Technical Reports,2009.
    [13] Jr R W V,Mcnamara J J.Performance enhancement and load reduction of a 5 MW wind turbine blade[J].Renewable Energy,2014,66(3):391~401.
    [14] 周邢银.大型风力机复合材料叶片弯扭耦合特性研究[D].北京:华北电力大学,2016.
    [15] Jensen F M.Ultimate strength of a large wind turbine blade[M].Saarbrücken:LAP LAMBERT Academic Publishing,2010.
    [16] 牛山泉.新能源技术-风能科技[M].北京:科技出版社,2009:256~259.[16] Resor B R.Definition of a 5MW/61.5m wind turbine blade reference model[R].New Mexico:Office of Scientific & Technical Information Technical Reports,2013.
    [17] D.Todd Griffith,Thomas D.Ashwill.The sandia 100-meter all-glass baseline wind turbine blade:SNL 100-00[R].California:Sandia National Laboratories,2011.
    [18] Bajrie A,Hogsberg J, Rudinger F.Evaluation of damping estimates by automated operational modal analysis for offshore wind turbine tower vibrations[J].Renewable Energy,2017,59(6):1468~1476.
    [19] D.Todd Griffith,Thomas D.Ashwill.The Sandia 100-meter all-glass baseline wind turbine blade:SNL 100-00[R].California:Sandia National Laboratories,2011.
    [20] 杜静,周云鹏,郭智.大型水平轴风力发电机组塔筒非线性屈曲分析[J].太阳能学报,2016,37(12):3178~3183.
    [21] Wood D.Blade element theory for wind turbines[M].London:Springer,2011:136~138.
    [22] 苏丹,张伟伟,全金楼,等.基于CFD技术的高效叶栅耦合颤振分析方法[J].航空学报,2014,35(12):3232~3243.
    [23] Gibson R F.Principles of composite material mechanics[M].Florida:CRC Press,2011:64~68.
    [24] 陈文朴,李春,孙瑞,等.气动载荷对风力机叶片动态结构特性影响分析[J].热能动力工程,2017,32(4):115~119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700