过冷器表面冰层分离模型研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation on Modelling the Ice Separation on Supercooling Surface
  • 作者:蔡玲玲 ; 米沙 ; 刘志强
  • 英文作者:CAI Ling-Ling;MI Sha;LIU Zhi-Qiang;School of Energy Science and Engineering, Central South University;
  • 关键词:过冷表面 ; 冰层剥离 ; 冰堵 ; 零冰层
  • 英文关键词:supercooling surface;;ice layer removal;;ice blockage;;zero-ice layer
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:中南大学能源科学与工程学院;
  • 出版日期:2019-05-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金资助项目(No.51676209);; 中南大学中央高校基本科研业务费专项资金资助(No.2017zzts170)
  • 语种:中文;
  • 页:GCRB201905028
  • 页数:9
  • CN:05
  • ISSN:11-2091/O4
  • 分类号:202-210
摘要
本文对过冷表面冰层黏附力和分离力的理论进行了分析。分析结果表明:利用流体扰动来防止过冷壁面冰层厚度的增大时,应满足分离力足够剥离黏附在壁面的冰晶和冰层,且冰晶冰层分离速率不小于其生长速率。并由此理论分别建立了三个阶段的冰层分离模型;而在冰层生长的第三阶段,冰层分离率不小于冰层生长速率可实现冰层厚度不持续增长,此时在一定的过冷度条件下,存在临界剪切力,当流体剪切力大于临界值时,冰层厚度不会持续增长,因此不会引发冰堵问题;过冷壁面零冰层条件为冰层生长的第一阶段冰层能及时剥离,在一定的壁面条件下,存在临界流速,当流体流速大于临界值时,冰层能及时剥离,壁面不会出现冰层,可实现系统的高效运行.
        The theory of the adhesion and separation force of supercooling surface is analyzed in this paper. the results of analysis indicate that: when prevent the growth of ice thickness in supercooling surface by fluid's disturbance, the separating force can strip the ice, and separation rate of the ice is not less than the growth rate. And the separation conditions of the three stages are established respectively. When separation rate of the ice is not less than the growth rate in third stage, which can realize ice layer unsustainable increase. This moment, there is a critical shear force under certain supercooling conditions, when the fluid shear force is greater than the critical value,the ice layer unsustainable increase, which wouldn't cause ice blockage. The zero-ice layer conditions in supercooling is that the ice can be stripped instantly at the first stage, when the flow velocity is greater than critical velocity in certain conditions, the ice can be can be stripped instantly, there is not ice layer in the surface, which can realize efficient operation of the system.
引文
[1] Matsumoto K, Kobayashi T. Fundamental Study on Adhesion of Ice to Cooling Solid Surface[J]. International Journal of Refrigeration, 2007, 30(5):851-860
    [2] Matsumoto K, Daikoku Y. Fundamental Study on Adhesion of Ice to Solid Surface:Discussion on Coupling of Nano-scale Field With Macro-scale Field[J]. International Journal of Refrigeration, 2009, 32(3):444-453
    [3] Ivan A. Ryzhkinand, Petrenko V F. Physical Mechanisms Responsible for Ice Adhesion[J]. Journal of Physical Chemistry B, 1997, 101(32):6267-6270
    [4] Petrenko V, Whitworth R. Physics of Ice[M]. Oxford University Press, 2002
    [5] Guy Fortin, Jean Perron. Ice Adhesion Models to Predict Shear Stress at Shedding[J]. Journal of Adhesion Science&Technology, 2012, 26(4/5):523-553
    [6] Do G S, Sagara Y, Tabata M, et al. Development of Measurement System for Three-Dimensional Structure of Ice Crystals in Raw Beef Samples[J]. Transactions of theJapan Society of Refrigerating&Air Conditioning Engineers, 2012, 19(4):375-380
    [7] Meuler A J, Smith J D, Varanasi K K, et al. Relationships between Water Wettability and Ice Adhesion[J]. Acs Applied Materials&Interfaces, 2010, 2(11):3100
    [8] Meuler A J, Mckinley G H, Cohen R E. Exploiting Topographical Texture to Impart Icephobicity[J]. Acs Nano,2010, 4(12):7048-7052
    [9] Kulinich S A, Farzaneh M. How Wetting Hysteresis Influences Ice Adhesion Strength on Superhydrophobic Surfaces[J]. Langmuir the Acs Journal of Surfaces&Colloids,2009, 25(16):8854
    [10] Menini R, Ghalmi Z, Farzaneh M. Highly Resistant Icephobic Coatings on Aluminum Alloys[J]. Cold Regions Science&Technology, 2011, 65(1):65-69
    [11] Farhadi S, Farzaneh M, Kulinich S A. Anti-icing Performance of Superhydrophobic Surfaces[J]. Applied Surface Science, 2011, 257(14):6264-6269
    [12] Hirata T, Nagasaka K, Ishikawa M. Crystal Ice Formation of Solution and Its Removal Phenomena at Cooled Horizontal Solid Surface:Part I:Ice Removal Phenomena[J].International Journal of Heat and Mass Transfer, 2000,43(3):333-339
    [13] Hirata T, Kato M, Nagasaka K, Ishikawa M. Crystal ice Formation of Solution and Its Removal Phenomena at Cooled Horizontal Solid Surface Part II:Onset of Ice Removal Condition[J], International Journal of Heat and Mass Transfer, 2000, 43(5):757-765
    [14] Zou M, Beckford S, Wei R, et al. Effects of Surface Roughness and Energy on Ice Adhesion Strength[J]. Applied Surface Science, 2011, 257(8):3786-3792
    [15] O'Neill M E. A Sphere in Contact With a Plane Wall in a Slow Linear Shear Flow[J]. Chemical Engineering Science, 1968, 23(11):1293-1298
    [16] Hirata T, Ishikawa M, Yamada K. Crystal ice Formation of Solution and Its Removal Phenomena on Inclined Cooled Plate[J]. International Journal of Refrigeration,2002, 25(2):190-198
    [17] Hirata T, Nishi T, Ishikawa M. Ice Formation of Aqueous Solution and Its Removal Phenomena Around VerticalCooled Cylinder[J]. Heat and Mass Transfer, 2003, 26(2):189-196
    [18] Pronk P, Ferreira C A I, Witkamp G J. Mitigation of Ice Crystallization Fouling in Stationary and Circulating Liquid-Solid Fluidized Bed Heat Exchangers[J]. International Journal of Heat and Mass Transfer, 2010, 53(1-3):403-411
    [19]刘良泉.冰浆生成器壁面冰层形成机理研究[D].长沙:中南大学能源科学与工程学院,2012:45-47LIU Liangquan. Research on Formation Mechanism of Ice Layer on Ice Slurry Generator Surface[D]. Changsha:Central South University. School of Energy Science and Engineering, 2012:45-47
    [20] Katainen J, Paajanen M, Ahtola E, et al. Adhesion as an Interplay Between Particle Size and Surface Roughness[J]. Journal of Colloid&Interface Science, 2006, 304(2):524-529
    [21] Ivan A. Ryzhkinand, Petrenko V F. Physical Mechanisms Responsible for Ice Adhesion[J]. Journal of Physical Chemistry B, 1997, 101(32):6267-6270
    [22] Lozowski E P, Oleskiw M, Blackmore R Z, et al. Spongy Icing Revisited:Measurements of Ice Accretion Liquid Fraction in Two Icing Wind Tunnels[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2005:1-7
    [23] Pronk P. Fluidized Bed Heat Exchangers to Prevent Fouling in Ice Slurry Systems and Industrial Crystallizers[D].Delft:Delft University of Technology, 2006
    [24] Blackmore R Z, Makkonen L, Lozowski E P. A New Model of Spongy Icing From First Principles[J]. Journal of Geophysical Research Atmospheres, 2002, 107(D21):AAC9.1-AAC9.15
    [25] Kong W, Liu H. A Theory on the Icing Evolution of Supercooled Water Near Solid Substrate[J]. International Journal of Heat and Mass Transfer, 2015, 91:1217-1236
    [26] Tirmizi S H, Gill W N. Effect of Natural Convection on Growth Velocity and Morphology of Dendritic Ice Crystals[J]. Journal of Crystal Growth, 1987, 85(3):488-502
    [27] Fukusako S, Yamada M. Freezing Characteristics of Ethylene Glycol Solution[J]. W(a|¨)rme-und Stoff(u|¨)bertragung,1989, 24(5):303-309

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700