基于CAD模型的机器人压铸件磨削方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Robot grinding method of die casting based on CAD model
  • 作者:席文明 ; 谢剑阳 ; 梁志鹏 ; 冯亮友
  • 英文作者:XI Wenming;XIE Jianyang;LIANG Zhipeng;FENG Liangyou;School of Aerospace Engineering,Xiamen University;
  • 关键词:机器人磨削 ; 映射一致性 ; CAD/CAM/Robot集成 ; 单轴旋转法
  • 英文关键词:robot grinding;;mapping consistency;;CAD/CAM/Robot integration;;single-axis rotation method
  • 中文刊名:GCHE
  • 英文刊名:Chinese Journal of Construction Machinery
  • 机构:厦门大学航空航天学院;
  • 出版日期:2019-08-05
  • 出版单位:中国工程机械学报
  • 年:2019
  • 期:v.17
  • 语种:中文;
  • 页:GCHE201904001
  • 页数:6
  • CN:04
  • ISSN:31-1926/TH
  • 分类号:5-10
摘要
对于复杂产品的磨削,普遍采用人工加工的方法,其效率低、工作环境恶劣,严重危害工人的身体健康.提出一种CAD/CAM集成的机器人磨削方法,并在研发的装备上实现了自动化磨削.为提高磨削精度,利用机器人作为测量工具,建立CAM空间与作业空间的映射一致性,减少CAM空间产生的轨迹向作业空间的映射偏差.采用单轴旋转法求解安川机器人的几何参数,建立其逆运动学方程,从而将机器人的笛卡尔坐标轨迹转换成与关节角对应的脉冲数,生成轨迹程序.实验结果表明:建立映射一致性后,只需对轨迹点做微小调整,就可以实现压铸件的磨削,磨削尺寸精度达到0.25mm.
        At present,the artificial grinding method,which is inefficient and whose working condition hurt the workers' health,is commonly used in grinding complex industrial products.To solve these problems,a CAD/CAM integrated robot grinding method is proposed and applied in a developed equipment to achieve automatic grinding.Further,to improve the grinding accuracy,robot is utilized as a measuring tool to establish the mapping consistency between CAM space and work space.Therefore,the mapping error of the trajectories,which are generated by CAM space mapped to work space,is reduced.Using the singleaxis rotation method to solve the geometrical parameters of the robot,the robot inverse kinematics equation is established.With the inverse kinematics equation,descartes coordinate trajectories of the robot can be converted into the number of pulses corresponding to the joint angle,and the robot trajectories program can be generated.Experimental results show that,due to the mapping consistency and making a minor adjustment on the trajectories the grinding accuracy is up to 0.25 mm.
引文
[1]TIAN W,ZENG Y F,ZHOU W,et al.Calibration of robotic drilling systems with a moving rail[J].Chinese Journal of Aeronautics,2014,27(6):1598-1604.
    [2]HUANG J,WU D F,MA Z,et al.Using an adaptive differential evolution algorithm to calibrate an industry robot and external axle[C]//IEEE Intelligent Control and Automation.2010:4922-4926.
    [3]YANG X D,LIAO W,LI J Q,et al.A minimal kinematic model for serial robot calibration using POE formula[J].Robotics and Computer-Integrated Manufacturing,2014,30:326-334.
    [4]BEAREE R,DIEULOT J Y,RABATE P.An innovative subdivision-ICP registration method for tool-path correction applied to deformed aircraft parts machining[J].International Journal of Advanced Manufacturing Technology,2011,53(5/6/7/8):463-471.
    [5]GAO B T,LIU Y,XI N,et al.Developing an efficient calibration system for joint offset of industrial robots[J].Journal of Applied Mathematics,2014(1):1-9.
    [6]LEALI F,VERGNANO A,PINI F,et al.A workcell calibration method for enhancing accuracy in robot machining of aerospace parts[J].International Journal of Advanced Manufacturing Technology,2016,85(1/2/3/4):47-55.
    [7]LEALI F,PELLICCIARI M,PINI F,et al.An offline programming method for the robotic deburring of aerospace components[C]//Robotics in Smart Manufacturing.Berlin:Springer,2013:1-13.
    [8]NUBIOLA A,BONEV I A.Absolute robot calibration with a single telescoping ballbar[J].Precision Engineering,2014,38(3):472-480.
    [9]SANTOLARIA J,BROSED F J,VELAZQUEZ J,et al.Selfalignment of on-board measurement sensors for robot kinematic calibration[J].Precision Engineering,2013,37(3):699-710.
    [10]SVACO M,SEKORANJA B,SULIGOJ F,et al.Calibration of an industrial robot using a stereo vision system[J].Procedia Engineering,2014,69(1):459-463.
    [11]JOUBAIR A,BONEV I A.Non-kinematic calibration of a sixaxis serial robot using planar constraints[J].Precision Engineering,2015,40:325-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700