Nanostructured NiMoO_4 as active electrocatalyst for oxygen evolution
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nanostructured NiMoO_4 as active electrocatalyst for oxygen evolution
  • 作者:Xinyue ; Zhao ; Jing ; Meng ; Zhenhua ; Yan ; Fangyi ; Cheng ; Jun ; Chen
  • 英文作者:Xinyue Zhao;Jing Meng;Zhenhua Yan;Fangyi Cheng;Jun Chen;Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University;
  • 英文关键词:Electrocatalysis;;Nickel;;Molybdenum;;Oxide;;Oxygen evolution
  • 中文刊名:FXKB
  • 英文刊名:中国化学快报(英文版)
  • 机构:Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University;
  • 出版日期:2019-02-15
  • 出版单位:Chinese Chemical Letters
  • 年:2019
  • 期:v.30
  • 基金:financially supported by the Ministry of Science and Technology(No. 2017YFA0206700);; the National Natural Science Foundation of China(No. 51571125) and Ministry of Education(No. B12015)
  • 语种:英文;
  • 页:FXKB201902009
  • 页数:5
  • CN:02
  • ISSN:11-2710/O6
  • 分类号:69-73
摘要
It is desirable to exploit cost-effective and earth-abundant catalysts for the oxygen evolution reaction (OER) in developing electrochemical energy conversion and storage technologies. Here we report a facile hydrothermal synthesis of NiMo04 nanorods as active and stable OER catalyst in alkaline condition. The prepared NiMoO_4 nanorods exhibit a considerably low overpotential of 340 mV at the current density of10 mA/cm~2 and a low Tafel slope of 45.6 mV/dec, which is comparable to the benchmark Ru02.Furthermore, the performance of NiMoO_4 significantly surpasses binary NiO and MoO_3 oxides due to enhanced charge transfer and promoted formation of catalytically active Ni~(3+) species. The results highlight the importance of designing ternary oxides in oxygen electrocatalysis.
        It is desirable to exploit cost-effective and earth-abundant catalysts for the oxygen evolution reaction (OER) in developing electrochemical energy conversion and storage technologies. Here we report a facile hydrothermal synthesis of NiMo04 nanorods as active and stable OER catalyst in alkaline condition. The prepared NiMoO_4 nanorods exhibit a considerably low overpotential of 340 mV at the current density of10 mA/cm~2 and a low Tafel slope of 45.6 mV/dec, which is comparable to the benchmark Ru02.Furthermore, the performance of NiMoO_4 significantly surpasses binary NiO and MoO_3 oxides due to enhanced charge transfer and promoted formation of catalytically active Ni~(3+) species. The results highlight the importance of designing ternary oxides in oxygen electrocatalysis.
引文
[1] F.Y. Cheng, J. Chen, Chem. Soc. Rev. 4(2012)2172-2192.
    [2] Y. Na, B. Hu, Q.L. Yang, et al., Chin. Chem. Lett. 26(2015)141-144.
    [3] W. Chen, Y.F. Gong, J.H. Liu, Chin. Chem. Lett. 28(2017)709-718.
    [4] X. Han, F.Y. Cheng, C.C. Chen, et al., Inorg. Chem. Front. 3(2016)866-871.
    [5] T. Ma, C. Li, X. Chen, et al., Inorg. Chem. Front. 4(2017)1628-1633.
    [6] X.X. Zou, Y. Zhang, Chem. Soc. Rev. 44(2015)5148-5180.
    [7] N.T. Suen, S.F. Hung, Q. Quan, et al., Chem. Soc. Rev. 46(2017)303-562.
    [8] H.X. Zhong, J. Wang, F.L. Meng, et al., Angew. Chem. Int. Ed. 55(2016)9937-9941.
    [9] A.S. Huang, G.H. Zhao, H.X. Li, Chin. Chem. Lett. 18(2017)997-1000.
    [10] Y. Lee, J. Suntivich, K. May, J. Phys. Chem. Lett. 3(2012)399-404.
    [11] F.Y. Cheng, J. Shen, B. Peng, et al., Nat. Chem. 3(2011)79-84.
    [12] C. Li, X.P. Han, F.Y. Cheng, et al., Nat. Commun. 5(2015)7345.
    [13] Z.H. Yan, H.M. Sun, X. Chen, et al., Nano Res. 11(2018)3282-3293.
    [14] H.C. Chien, W.Y. Cheng, Y.H. Wang, J. Mater. Chem. 21(2011)18180-18182.
    [15] J.J. Shi, K.X. Lei, W.Y. Sun, et al., Nano Res. 10(2017)3836-3847.
    [16] J. Du, C.C. Chen, F.Y. Cheng, et al., Inorg. Chem. 54(2015)5467-5474.
    [17] R.N. Singh, J.P. Singh, A. Singh, Int. J. Hydrogen Energy 33(2008)4260-4264.
    [18] M.Q. Yu, L.X. Jiang, H.G. Yang, Chem. Commun. 51(2015)14361-14364.
    [19] Z.X. Yin, Y.J. Chen, Y. Zhao, J. Mater. Chem. A 3(2015)22750-22758.
    [20] S.J. Peng, LL. Li, H.B. Wu, et al., Adv. Energy Mater. 5(2015)1401172-1401179.
    [21] B. Wang, S.M. Li, X.Y. Wu, et al., J. Mater. Chem. A 3(2015)13691-13698.
    [22] J.H. Ahn, G.D. Park, Y.C. Kang, et al., Electrochim. Acta 174(2015)102-110.
    [23] K. Xiao, L. Xia, G.X. Liu, et al., J. Mater. Chem. A. 3(2015)6128-6135.
    [24] D.P. Cai, B. Liu, D.D. Wang, et al., Electrochim. Acta 125(2014)294-301.
    [25] S.E. Moosavifard, J. Shamsi, S. Fani, et al., RSC Adv. 4(2014)52555-52561.
    [26] R.N. Singh, R. Awasthi, A.S. Sinha, et al., J. Solid State Electrochem. 13(2009)1613-1619.
    [27] P.R. Jothi, S. Kannan, G. Velayutham, J. Power Sources 277(2015)350-359.
    [28] K. Eda, Y. Kato, Y. Ohshiro, et al., J. Solid State Electrochem. 183(2010)1334-1339.
    [29] M. Wiesmann, H. Ehrenberg, G. Wltschekb, et al., J. Magn. Magn. Mater. 150(1995)1-4.
    [30] P.R. Jothi, K. Shanthi, R.R. Salunkhe, et al., Eur. J. Inorg. Chem. 22(2015)3694-3699.
    [31] L. Huang, J.W. Xiang, W. Zhang, et al., J. Mater. Chem. A3(2015)22081-22087.
    [32] B. Wang, S.M. Li, X.Y. Wu, et al., Phys. Chem. Chem. Phys. 18(2016)908-915.
    [33] Q.C. Dong, C.C. Sun, Z.Y. Dai, et al., ChemCatChem 8(2016)1-7.
    [34] Z. Yin, Y. Chen, Y. Zhao, et al., J. Mater. Chem. A 3(2015)22750-22758.
    [35] J. Yin, P.P. Zhou, L. An, et al., Nanoscale 8(2016)1390-1400.
    [36] M.H. Yu, X.Y. Cheng, Y.X. Zeng, et al., Angew. Chem. Int. Ed. 55(2016)6762-6766.
    [37] S.J. Deng, Y. Zhong, Y.X. Zeng, et al., Adv. Mater. 29(2017)1700748.
    [38] S.J. Deng, Y. Zhong, Y.X. Zeng, et al., Adv. Sci. 2017(1700)772.
    [39] H.M. Sun, X.B. Xu, Z.H. Yan, et al., Chem. Mater. 29(2017)8539-8547.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700