一种分布式螺旋桨运输机方案及其滑流效应研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Aerodynamic Shape Design Scheme of a Distributed Propeller Transport Aircraft and Its Slipstream Effect
  • 作者:杨小川 ; 李伟 ; 王运涛 ; 王昊 ; 岳皓 ; 黄江涛
  • 英文作者:YANG Xiaochuan;LI Wei;WANG Yuntao;WANG Hao;YUE Hao;HUANG Jiangtao;Computational Aerodynamics Institute,China Aerodynamics Research and Development Center;
  • 关键词:分布式推进 ; 螺旋桨 ; 滑流 ; 运输机 ; TRIP ; 数值模拟 ; 等效盘
  • 英文关键词:distributed propulsion;;propeller;;slipstream;;transport aircraft;;TRIP;;numerical simulation;;actuator disk
  • 中文刊名:XBGD
  • 英文刊名:Journal of Northwestern Polytechnical University
  • 机构:中国空气动力研究与发展中心计算空气动力研究所;
  • 出版日期:2019-04-15
  • 出版单位:西北工业大学学报
  • 年:2019
  • 期:v.37;No.176
  • 基金:国家重点研究发展计划(2016YFB0200700)资助
  • 语种:中文;
  • 页:XBGD201902020
  • 页数:8
  • CN:02
  • ISSN:61-1070/T
  • 分类号:158-165
摘要
随着电推进技术在汽车、火车等传统运输领域获得不断发展和广泛关注,应用于纯电动或油电混合动力中小型飞行器的分布式螺旋桨推进技术已成为航空研究新热点。首先提出了一种分布式螺旋桨电推进运输机初步方案;然后,基于雷诺平均N-S方程,结合SA湍流模型,运用等效盘代替真实分布式螺旋桨,完成该机低空低速大拉力状态下的有无滑流全机气动特性分析;最后,重点对机翼和尾翼的压力分布、俯仰力矩特性以及分布式螺旋桨下机翼流动进行滑流影响研究。分析结果表明:有滑流状态下升阻力均较无滑流大,且有滑流较无滑流状态机翼低头力矩大,尾翼抬头力矩较大;尾翼离滑流区较远或完全处于滑流区时,有无滑流状态下尾翼俯仰力矩差量较小,而尾翼仅部分处于滑流区时,差量较大;分布式螺旋桨直径相对机翼厚度较大时,更多的螺旋桨功率用于对远离机翼表面区域的气流做功,引起升力系数增加不显著。
        With the continuous development and widespread attention of electric propulsion technology in traditional transportation fields such as automobiles and trains, the distributed propeller propulsion technology applied to electric or hybrid electric medium and small scale aircrafts has become a new topic in aviation research. This paper presents a preliminary design scheme of a distributed propeller electric propulsion transport aircraft firstly. Then, based on Reynolds average N-S equations, combined with the SA turbulence model, and replaced the real distributed propellers with simplified disk model, the aerodynamic characteristics of the aircraft with and without slipstream under the condition of low speed and high thrust at low altitude are analyzed. Finally, the effects of pressure distribution, pitching moment characteristics and wing flow on distributed propellers are studied in detailed. The results show that the lift and drag of the aircraft with slipstream are both larger than without slipstream and with slipstream effect, the pitching moment of the wing decreases, the pitching moment of the tail increases. When the tail is far away or completely inside the region of slipstream, the difference of pitching moment of the tail with and without slipstream is little, and the difference is obvious as the tail is only partially in the region of slipstream; When the diameter of distributed propellers is far larger than the wing thickness, more propeller power is used to shove air flow away from the surface area of the wing, and resulting in an insignificant increase in the coefficient of lift.
引文
[1] GOHARDANI A S,DOULGERIS G D,SINGH R.Challenges of Future Aircraft Propulsion:a Review of Distributed Propulsion Technology and Its Potential Application for the All Electric Commercial Aircraft[J].Progress in Aerospace Sciences,2011,47:369-391
    [2] 孔祥浩,张卓然,陆嘉伟,等.分布式电推进飞机电力系统研究综述[J].航空学报,2018,39(1):021651KONG Xianghao,ZHANG Zhuoran,LU Jiawei,et al.Review of Electric Power System of Distributed Electric Propulsion Aircraft[J].Acta Aeronautica et Astronautica Sinica,2018,39(1):021651 (in Chinese)
    [3] 黄俊,杨凤田.新能源电动飞机发展与挑战[J].航空学报,2016,37(1):57-68HUANG Jun,YANG Fengtian.Development and Challenges of Electric Aircraft with New Energies[J].Acta Aeronautica et Astronautica Sinica,2016,37(1):57-68 (in Chinese)
    [4] CHRISTIE R J,DUBOIS A,DERLAGA J M.Cooling of Electric Motors Used for Propulsion on SCEPTOR[R].NASA-TM-2017-219134
    [5] PATTERSON M D,DERLAGA J M,BORER N K,et al.High-lift Propeller System Configuration Selection for NASA′s SCEPTOR Distributed Electric Propulsion Flight Demonstrator[R].AIAA-2016-3922
    [6] BORER N K,PATTERSON M D,VIKEN J K,et al.Design and Performance of the NASA SCEPTOR Distributed Electric Propulsion Flight Demonstrator[R].AIAA 2016-3920 Washington,2016
    [7] STOLL A M,BEVIRT J,MOORE M D,et al.Drag Reduction through Distributed Electric Propulsion[R].AIAA-2014-2851
    [8] PATTERSON M D,BORER N K.Approach Considerations in Aircraft with High-Lift Propeller Systems[R].AIAA-2017-3782
    [9] VELDHUIS L L M,LUURSEMA G W.Comparison of an Actuator Disk and a Blade Modeling Approach in Navier-Stokes Calculations on the SR-3 Propfan[R].AIAA 2000-4528,Denver,2000
    [10] 李博,梁德旺,黄国平.基于等效盘模型的滑流对涡桨飞机气动性能的影响[J].航空学报,2008,29(4):845-852LI Bo,LIANG Dewang,HUANG Guoping.Propeller Slipstream Effects on Aerodynamic Performance of Turbo-Prop Airplane Based on Equivalent Actuator Disk Model[J].Acta Aeronautica et Astronautica Sinica,2008,29(4):845-852 (in Chinese)
    [11] 左岁寒,杨永.螺旋桨滑流对带后缘襟翼机翼气动特性影响的数值分析[J].航空计算技术,2007,37(1):54-57ZUO Suihan,YANG Yong.Numerical Simulation of Propeller/High-Lift System Interaction[J].Aeronautical Computing Technique,2007,37(1):54-57 (in Chinese)
    [12] 夏贞锋,罗淞,杨永.基于激励盘理论的螺旋桨滑流数值模拟研究[J].空气动力学学报,2012,30(2):219-222XIA Zhenfeng,LUO Song,YANG Yong.Numerical Simulations of Propeller Slipstream Flows Using Actuator Disk Theory[J].Acta Aerodynamica Sinica,2012,30(2):219-222 (in Chinese)
    [13] 杨小川,王运涛,王光学.基于等效盘的螺旋桨飞机数值模拟[J].气体物理-理论与应用,2012,7(3):40-47YANG Xiaochuan,WANG Yuntao,WANG Guangxue.Numerical Simulation of Propeller Slipstream Based on Equivalent Actuator Disk Model[J].Physics of Gases Theory and Applications,2012,7(3):40-47 (in Chinese)
    [14] 张小莉,张一帆.螺旋桨滑流对增升装置气动特性影响研究[J].航空计算技术,2011,41(4):1-3ZHANG Xiaoli,ZHANG Yifan.Research on Interaction of Propeller and High-Lift System[J].Aeronautical Computing Technique,2011,41(4):1-3 (in Chinese)
    [15] ROOSENBOOM E W M,STURMER A,SCHRODER A.Comparison of PIV Measurements with Unsteady Rans Calculations in a Propeller Slipsteam[R].AIAA-2009-3626
    [16] 张刘,白俊强,李华星,等.螺旋桨滑流与机翼之间气动干扰影响研究[J].航空计算技术,2012,42(2):87-91ZHANG Liu,BAI Junqiang,LI Huaxing,et al.Research on Aerodynamic Interference for Propeller Slipstream over the Wing[J].Aeronautical Computing Technique,2012,42(2):87-91 (in Chinese)
    [17] 许和勇,叶正寅.螺旋桨非定常滑流数值模拟[J].航空动力学报,2011,26(1):148-153XU Heyong,YE Zhenyin.Numerical Simulation of Unsteady Propeller Slipstream[J].Journal of Aerospace Power,2011,26(1):148-153 (in Chinese)
    [18] 杨小川,王运涛,王光学,等.螺旋桨非定常滑流的高效数值模拟研究[J].空气动力学学报,2014,32(3):289-294YANG Xiaochuan,WANG Yuntao,WANG Guangxue,et al.Numerical Simulation of Unsteady Propeller Slipstream[J].ACTA Aerodynamica Sinica,2014,32(3):289-294 (in Chinese)
    [19] 王伟,段卓毅,耿建中.考虑螺旋桨滑流影响的双发涡桨飞机气动特性研究[J].西北工业大学学报,2017,35(6):1105-1110WANG Wei,DUAN Zhuoyi,GENG Jianzhong,et al.Aerodynamics Analysis of Two-Turboprop Aircraft with Propeller Slipstream Effects Considered[J].Journal of Northwestern Polytechnical University,2017,35(6):1105-1110 (in Chinese)
    [20] 王运涛,王光学,张玉伦.采用TRIP2.0软件计算DLR-F6构型的阻力[J].空气动力学学报,2009,27(1):108-113WANG Yuntao,WANG Guangxue,ZHANG Yulun.Drag Prediction of DLR-F6 Configuration with TRIP2.0 Software[J].Acta Aerodynamica Sinica,2009,27(1):108-113 (in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700