Be,Mg,Mn掺杂CuInO_2形成能的第一性原理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The first-principle study on the formation energies of Be,Mg and Mn doped CuInO_2
  • 作者:莫曼 ; 曾纪术 ; 何浩 ; 张喨 ; 杜龙 ; 方志杰
  • 英文作者:Mo Man;Zeng Ji-Shu;He Hao;Zhang Liang;Du Long;Fang Zhi-Jie;College of Science,Guangxi University of Science and Technology;Materials Science and Engineering Research Center,Guangxi University of Science and Technology;
  • 关键词:CuInO_2 ; 掺杂 ; 形成能
  • 英文关键词:CuInO_2;;doping;;formation energy
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:广西科技大学理学院;广西科技大学材料科学与工程研究中心;
  • 出版日期:2019-05-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:11464003,11864005);; 广西自然科学基金(批准号:2017GXNSFAA198315);; 柳州市科技计划项目(批准号:2016B040202);; 广西高校中青年教师基础能力提升项目(批准号:2018KY0324)资助的课题~~
  • 语种:中文;
  • 页:WLXB201910023
  • 页数:6
  • CN:10
  • ISSN:11-1958/O4
  • 分类号:211-216
摘要
研制开发新型的光电材料对促进社会经济发展具有重要的科学意义和实用价值.利用宽禁带CuInO_2铟基材料实现全透明光电材料是目前深入研究的热点.通过基于密度泛函的第一性原理计算方法,本文计算出掺杂元素Mg, Be, Mn在CuInO_2的形成能.计算结果表明,施主类缺陷(如掺杂元素替代Cu原子或进入间隙位置)由于较高的形成能和较深的跃迁能级,很难在CuInO_2材料中出现N型导电;而受主缺陷中,在氧原子化学势极大的情况下, Mg原子替代In能成为CuInO_2理想的受主缺陷.计算结果可为制备性能优异的CuInO_2材料提供指导.
        Exploring new type of optoelectronic materials has fundamental scientific and practical significance in the development of society and economy. Recently, intense research has focused on the use of the wide band-gap bipolarity semiconductor material CuInO_2 which will allow to the fabrication of that total transparent optoelectronic materials. However, the conductivity of CuInO_2 is significantly lower than other n-type conductivity of other TCOs. As a result, one of the key question is how to improve the electric properties of CuInO_2 by doping method. Motivated by this observation, in this paper, using the first-principles methods, the formation energetics properties of dopant(Be, Mg, Mn) in transparent conducting oxides CuInO_2 were studied within the local-density approximation. Substituting dopant(Be, Mg, Mn) for In, substituting dopant(Be, Mg,Mn) for Cu and dopant as interstitial in their relevant charge state are considered. By systematically calculating formation energies and transition energy level of defect, the calculated results show that, substituting Mg for In does not induce the large structural relaxation. in CuInO_2. One can expect that substituting the Mg and Mn for In introduces acceptor because the relative lower formation energies, furthermore, Be atoms would be substitute for In atoms when the Ef move to CBM. In addition, the donor-type extrinsic defects(such as substituting dopant for Cu and dopant as interstitial) have difficulty in inducing n-conductivity in CuInO_2 because of their deep transition energy level or the higher formation energies. Considering the transition energy level position,Be In, Mg In, and Mn In have transition energy levels at 0.06, 0.05, and 0.40 eV above the VBM, respectively.Thus, for all the acceptor-type extrinsic defects, substituting Mg for In is the most prominent doping acceptor with relative shallow transition energy levels in CuInO_2 under O-rich condition. Based on our calculated results and discussion mentioned above, in order to increase p-type conductivity in CuInO_2, we could substitute Mg atoms for In atoms by the sit-selective doping method through atomic layer epitaxy growth or controlling the oxygen partial pressure in the molecular beam epitaxy or metal-organic chemical vapor deposition crystal growth process. The calculation results will not only provide the guide for design of new type In-based optoelectronic materials, but will also further understand the potential properties in CuInO_2.
引文
[1]Ginley D S,Bright C 2000 MRS Bull.25 8
    [2]Wang L J,Wang W Z,Chen Y L,Yao L Z,Zhao X,Shi H L,Cao M S,Liang Y J 2018 ACS Appl.Mat.Interfaces 10 11652
    [3]Cao M S,Wang X X,Cao W Q,Fang X Y,Wen B,Yuan J2018 Small 14 1
    [4]Chen Y L,Wang L Y,Wang W Z,Cao M S 2017 Appl.Catal.B 209 110
    [5]Kawazoe H,Yasukawa M,Hyodo H 1997 Nature 389 939
    [6]Yanagi H,Inoue S,Ueda K,Kawazoe H,Hosono H 2000 J.Appl.Phys.88 4159
    [7]Nakanishi A,Katayama-Yoshida H,Ishikawa T,Shimizu K2016 J.Phys.Soc.Jpn.85 094711
    [8]Jedidi A,Rasul S,Masih D,Cavallo L,Takanabe K 2015 J.Mater.Chem.A 3 19085
    [9]Nie X,Wei S H,Zhang S B 2002 Phys.Rev.Lett.88 066405
    [10]Hamada I,Katayama-Yoshida H 2006 Physsica B 377 808
    [11]Jiang H F,Zhu X B,Lei H C,Li G,Yang Z R 2011 Thin Solids Film 519 2559
    [12]Shimode M,Sasaki M,Mukaida K 2000 J.Soli.Stat.Chem.151 16
    [13]Liu Q J,Liu Z T,Feng L P 2010 Physica B 405 2028
    [14]Singh M,Mehta B R,Varandani D,Singh V N 2009 J.Appl.Phys.106 053709
    [15]Ye F,Cai X M,Dai F P,Zhang D P,Fan P,Liu L J 2011Adv.Mater.Res.239 242
    [16]Shin D,Foord J S,Payne D J 2009 Phys.Rev.B 80 233105
    [17]Varandani D,Singh B,Mehta B,Singh M,Singh V,Nand GD 2010 J.Appl.Phys.107 103703
    [18]Roland G,John R 2011 Phys.Rev.B 84 035125
    [19]Godinho K G,Morgan B J,Allen J P,Scanlon D O,Watson G W 2011 J.Phys.:Cond.Matter 23 334201
    [20]Yao Y,Xie G,Song N,Yu X H,Li R X 2011 Adv.Mater.Res.399 401
    [21]Liu L,Bai K W,Gong H,Wu P 2005 Phys.Rev.B 72 125204
    [22]Blouchl P E 1994 Phys.Rev.B 50 17953
    [23]Kresse G,Joubert J 1999 Phys.Rev.B 59 1758
    [24]Hohenberg P,Kohn W 1964 Phys.Rev.B 136 864
    [25]Kohn W,Sham L J 1965 Phys.Rev.A 140 1133
    [26]Kresse G,Furthmüller J 1996 Phys.Rev.B 54 11169
    [27]Kresse G,Furthmüller J 1996 Comp.Mater.Sci.6 15
    [28]Monkhorst H J,Pack J D 1976 Phys.Rev.B 13 5188
    [29]Pack J D,Monkhorst H J 1977 Phys.Rev.B 16 1748
    [30]Murnaghan F D,Natl P 1944 Acad.Sci.USA 30 244
    [31]Chu S,Hollberg L,Bjorkholm J E,Cable A,Ashkin A 1985Phys.Rev.Lett.55 48
    [32]Wei S H 2004 Comput.Mat.Sci.30 337

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700