导模共振集成量子阱红外探测器研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study of Guided-Mode Resonance Enhanced Quantum Well Infrared Photodetector
  • 作者:余昊楠 ; 曹全君 ; 唐伟伟 ; 王林
  • 英文作者:Yu Haonan;Cao Quanjun;Tang Weiwei;Wang Lin;College of Information Engineering,Zhejiang University of Technology;National Laboratory for Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences;
  • 关键词:量子阱 ; 导模共振 ; 增强吸收 ; 红外探测器
  • 英文关键词:quantum well;;guided mode resonance;;enhance absorption;;infrared detector
  • 中文刊名:HKBQ
  • 英文刊名:Aero Weaponry
  • 机构:浙江工业大学信息工程学院;中国科学院上海技术物理研究所红外物理国家重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:航空兵器
  • 年:2019
  • 期:v.26;No.311
  • 基金:航空科学基金项目(20162490001);; 中国科学院青年创新促进会项目
  • 语种:中文;
  • 页:HKBQ201903011
  • 页数:5
  • CN:03
  • ISSN:41-1228/TJ
  • 分类号:71-75
摘要
提出一种基于全介质导模共振增强量子阱红外探测器性能的方法,在7. 5~9. 0μm电磁波谱范围内,利用导模共振,在量子阱层形成波导模式和光场局域。该结构的损耗很低,使得量子阱激活层内的光子寿命很长,极大地增强了量子阱材料的吸收。通过优化器件参数,量子阱的吸收可达95%,远远高于基于金属等离激元原理增强量子阱器件的吸收。且该探测器对制作工艺有很高的容忍度。
        A method for enhancing the performance of quantum well infrared photodetector( QWIP)based on the guided mode resonance( GMR) is presented. In the range of 7. 5 ~ 9. 0 μm electromagnetic spectrum,guided mode resonance is used to form waveguide mode and optical field localization in quantum well layer. With optimized grating parameters,the structure can achieve extraordinary optical absorption and over 95% of the light is absorbed by the quantum well active region,much more than the absorption enhancement based on the principle of metal plasmon,due to the absence of the metal ohmic loss.Besides,the good tolerance to structural deviation could facilitate the fabrication process.
引文
[1] Baker I M,Ballingall R A. Photovoltaic Cd Hg Te-Silicon Hybrid Focal Planes[C]∥28th Annual Technical Symposium,San Diego,United States,1985:121-129.
    [2]Destefanis G,Baylet J,Ballet P,et al. Status of Hg Cd Te Bicolor and Dual-Band Infrared Focal Arrays at LETI[J].Journal of Electronic Materials,2007,36(8):1031-1044.
    [3]Lawson W D,Nielsen S,Putley E H,et al. Preparation and Properties of Hg Te and Mixed Crystals of Hg Te-CdTe[J]. Journal of Physics and Chemistry of Solids,1959,9(3):325-329.
    [4]Lee J J,Kim J D,Razeghi M. Room Temperature Operation of 8-12μm In Sb Bi Infrared Photodetectors on Ga As Substrates[J]. Applied Physics Letters,1998,73(5):602-604.
    [5]Krishna S,Forman D,Annamalai S,et al. Demonstration of a 320×256 Two-Color Focal Plane Array Using In As/In Ga As Quantum Dots in Well Detectors[J]. Applied Physics Letters,2005,86(19):193501.
    [6] Varley E,Lenz M,Lee S J,et al. Single Bump,TwoColor Quantum Dot Camera[J]. Applied Physics Letters,2007,91(8):081120.
    [7]Berryman K W,Lyon S A,Segev M. Mid-Infrared Photoconductivity in In As Quantum Dots[J]. Applied Physics Letters,1997,70(14):1861-1863.
    [8]Phillips J,Bhattacharya P,Kennerly S W,et al. Self-Assembled In As-GaAs Quantum-Dot Intersubband Detectors[J]. IEEE Journal of Quantum Electronics,1999,35(6):936-943.
    [9]Maimon S,Finkman E,Bahir G. Intersublevel Transitions in In As/Ga As Quantum Dots Infrared Photodetectors[J].Applied Physics Letters,1998,73(14):2003-2005.
    [10] Pan D,Towe E. Normal-Incidence Intersubband(In,Ga)As/Ga As Quantum Dot Infrared Photodetectors[J].Applied Physics Letters,1998,73(14):1937-1939.
    [11]Raghavan S,Rotella P,Stintz A,et al. High-Responsivity,Normal-Incidence Long-Wave Infrared(λ~7. 2μm)In As/In0. 15Ga0. 85As Dots-in-a-Well Detector[J].Applied Physics Letters,2002,81(8):1369-1371.
    [12]Wang C C,Lin S D. Resonant Cavity-Enhanced Quantum-Dot Infrared Photodetectors with Sub-Wavelength Grating Mirror[J]. Journal of Applied Physics,2013,113(21):213108.
    [13]Vandervelde T E,Lenz M C,Varley E,et al. Quantum Dots-in-a-Well Focal Plane Arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics,2008,14(4):1150-1161.
    [14]Chang C C,Sharma Y D,Kim Y S,et al. A Surface Plasmon Enhanced Infrared Photodetector Based on In As Quantum Dots[J]. Nano Letters,2010,10(5):1704-1709.
    [15]Lee S J,Ku Z,Barve A,et al. A Monolithically Integrated Plasmonic Infrared Quantum Dot Camera[J]. Nature Communications,2011(2):286.
    [16] Yu Z F,Veronis G,Fan S H. Design of Midinfrared Photodetectors Enhanced by Surface Plasmons on Grating Structures[J]. Applied Physics Letters,2006,89(15):151116.
    [17]Rosenberg J,Shenoi R V,Vandervelde T E,et al. A Multispectral and Polarization-Selective Surface-Plasmon Resonant Midinfrared Detector[J]. Applied Physics Letters,2009,95(16):161101.
    [18]Sharma Y D,Jun Y C,Kim J O,et al. Polarization-Dependent Photocurrent Enhancement in Metamaterial-Coupled Quantum Dots-in-a-Well Infrared Detectors[J]. Optics Communications,2014,312(1):31-34.
    [19] Shishodia M S,Jayaweera P V V,Matsik S G,et al.Surface Plasmon Enhanced IR Absorption:Design and Experiment[J]. Photonics and Nanostructures-Fundamentals and Applications,2011,9(1):95-100.
    [20]Wang J,Chen X S,Li Z F,et al. Study of Grating Performance for Quantum Well Photodetectors[J]. Journal of the Optical Society of America B,2010,27(11):2428-2432.
    [21]Zhao F Y,Zhang C,Chang H T,et al. Design of Plasmonic Perfect Absorbers for Quantum-Well Infrared Photodetection[J]. Plasmonics,2014,9(6):1397-1400.
    [22]Kalchmair S,Detz H,Cole G D,et al. Photonic Crystal Slab Quantum Well Infrared Photodetector[J]. Applied Physics Letters,2011,98(1):011105.
    [23]Palik E D. Handbook of Optical Constants of Solids[M].Orlando,Florida,USA:Academic Press Inc,1985.
    [24]Bao G,Huang K. Computational Design for GuidedMode Grating Resonances[J]. Journal of the Optical Society of America,2005,22(7):1408-1413.
    [25]Liu W X,Li Y H,Jiang H T,et al. Controlling the Spectral Width in Compound Waveguide Grating Structures[J]. Optics Letters,2013,38(2):163-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700