Versatile GaInO_3-sheet with strain-tunable electronic structure,excellent mechanical flexibility,and an ideal gap for photovoltaics
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Versatile GaInO_3-sheet with strain-tunable electronic structure,excellent mechanical flexibility,and an ideal gap for photovoltaics
  • 作者:杜慧 ; 刘世杰 ; 李国岭 ; 李立本 ; 刘学深 ; 刘冰冰
  • 英文作者:Hui Du;Shijie Liu;Guoling Li;Liben Li;Xueshen Liu;Bingbing Liu;School of Physics and Engineering,and Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications,Henan University of Science and Technology;Institute of Atomic and Molecular Physics,Jilin University;State Key Laboratory of Superhard Materials,Jilin University;
  • 英文关键词:two-dimensional(2D) material;;GaInO_3-sheet;;first-principles method;;strain effect
  • 中文刊名:ZGWL
  • 英文刊名:中国物理B
  • 机构:School of Physics and Engineering and Henan Key Laboratory of Photoelectric Energy Storage Materials and ApplicationsHenan University of Science and Technology;Institute of Atomic and Molecular Physics Jilin University;State Key Laboratory of Superhard Materials Jilin University;
  • 出版日期:2019-01-15
  • 出版单位:Chinese Physics B
  • 年:2019
  • 期:v.28
  • 基金:Project supported by the National Natural Science Foundation of China(Grant Nos.11847094,61764001,and U1404212);; the Cheung Kong Scholars Programme of China;; the Program of Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT1132);; Open Project of State Key Laboratory of Superhard Materials(Jilin University);China(Grant No.201703)
  • 语种:英文;
  • 页:ZGWL201901060
  • 页数:5
  • CN:01
  • ISSN:11-5639/O4
  • 分类号:497-501
摘要
Due to many remarkable physical and chemical properties, two-dimensional(2D) nanomaterials have become a hot spot in the field of condensed matter physics. In this paper, we have studied the structural, mechanical, and electronic properties of the 2D GaInO_3 system by first-principles method. We find that 2D Ga InO_3 can exist stably at ambient condition. Molecular dynamic simulations show that GaInO_3-sheet has excellent thermal stability and is stable up to1100 K. Electronic structural calculations show that GaInO_3-sheet has a band gap of 1.56 eV, which is close to the ideal band gap of solar cell materials, demonstrating great potential in future photovoltaic application. In addition, strain effect studies show that the GaInO_3-sheet structure always exhibits a direct band gap under biaxial compressive strain, and as the biaxial compressive strain increases, the band gap gradually decreases until it is converted into metal. While biaxial tensile strain can cause the 2D material to transform from a direct band gap semiconductor into an indirect band gap semiconductor,and even to metal. Our research expands the application of the Ga InO_3 system, which may have potential application value in electronic devices and solar energy.
        Due to many remarkable physical and chemical properties, two-dimensional(2D) nanomaterials have become a hot spot in the field of condensed matter physics. In this paper, we have studied the structural, mechanical, and electronic properties of the 2D GaInO_3 system by first-principles method. We find that 2D Ga InO_3 can exist stably at ambient condition. Molecular dynamic simulations show that GaInO_3-sheet has excellent thermal stability and is stable up to1100 K. Electronic structural calculations show that GaInO_3-sheet has a band gap of 1.56 eV, which is close to the ideal band gap of solar cell materials, demonstrating great potential in future photovoltaic application. In addition, strain effect studies show that the GaInO_3-sheet structure always exhibits a direct band gap under biaxial compressive strain, and as the biaxial compressive strain increases, the band gap gradually decreases until it is converted into metal. While biaxial tensile strain can cause the 2D material to transform from a direct band gap semiconductor into an indirect band gap semiconductor,and even to metal. Our research expands the application of the Ga InO_3 system, which may have potential application value in electronic devices and solar energy.
引文
[1]Zhang H J,Li Y F,Hou J H,Tu K X and Chen Z F 2016 J.Am.Chem.Soc.138 5644
    [2]Wirth-Lima A J,Silva M G and Sombra A S B 2018 Chin.Phys.B 27023201
    [3]Lei J H,Wang X F and Lin J G 2017 Chin.Phys.B 26 127101
    [4]Li L k,Yu Y J,Ye G J,Ge Q Q,Ou X D,Wu H,Feng D L,Chen X Hand Zhang Y B 2014 Nat.Nanotechnol.9 372
    [5]Zhang Q,Zhang H and Cheng X L 2018 Chin.Phys.B 27 027301
    [6]Wan W H,Liu C,Xiao W D and Yao Y G 2017 Appl.Phys.Lett.111132904
    [7]Cocemasov A I,Isacova C I and Nika D L 2018 Chin.Phys.B 27056301
    [8]Chen S and Shi G Q 2017 Advanced Mater.29 1605448
    [9]Hong J H,Jin C H,Yuan J and Zhang Z 2017 Advanced Mater.291606434
    [10]Kong X K,Liu Q C,Zhang C L,Peng Z M and Chen Q W 2017 Chem.Soc.Rev.46 2127
    [11]Hu G,Huang J Q,Wang Y N,Yang T,Dong B J,Wang J Z,Zhao B,Ali S and Zhang Z D 2018 Chin.Phys.B 27 086301
    [12]Novoselov K S,Geim A K,Morozov S V,Jiang D,Zhang Y,Dubonos S V,Grigorieva I V,Firsov A A 2004 Science 306 666
    [13]Xia F N,Farmer D B,Lin Y M and Avouris P 2010 Nano Lett.10 715
    [14]Cava R J,Phillips J M,Kwo J,Thomas G A,van Dover R B,Carter SA,Krajewski J J,Peck W F,Marshall J H and Rapkine D H 1994 Appl.Phys.Lett.64 2071
    [15]Patzke G and Binnewies M 2000 Solid State Sci.2 689
    [16]Minami T 2000 MRS Bull.25 38
    [17]Tomm Y,Reiche P,Klimm D and Fukuda T 2000 J.Cryst.Growth 220510
    [18]Banerjee A N and Chattopadhyay K K 2005 Prog.Cryst.Growth Characterization Mater.50 52
    [19]Peelaers H,Steiauf D,Varley J B,Janotti A and Van de Walle C G 2015Phys.Rev.B 92 085206
    [20]Li G L,Zhang F B,Cui Y T,Oji H,Son J Y and Guo Q X 2015 Appl.Phys.Lett.107 022109
    [21]Rusakov D A,Belik A A,Kamba S,Savinov M,Nuzhnyy D,Kolodiazhnyi T,Yamaura K,Takayama-Muromachi E,Borodavka F and Kroupa J 2011 Inorg.Chem.50 3559
    [22]Wang V,Xiao W,Ma D M,Liu R J and Yang C M 2014 J.Appl.Phys.115 043708
    [23]Shannon R D,Prewitt C T 1968 J.Inorg.Nucl.Chem.30 1389
    [24]Kresse G and Furthmuller J 1996 Phys.Rev.B 54 11169
    [25]Perdew J P,Burke K and Ernzerhof M 1996 Phys.Rev.Lett.77 3865
    [26]Heyd J,Scuseria G E and Ernzerhof M 2003 J.Chem.Phys.118 8207
    [27]Togo A,Oba F and Tanaka I 2008 Phys.Rev.B 78 134106
    [28]Naguib M,Kurtoglu M,Presser V,Lu J,Niu J J,Heon M,Hultman L,Gogotsi Y and Barsoum M W 2011 Advanced Mater.23 4248
    [29]Zhang S H,Zhou J,Wang Q,Chen X S,Kawazoe Y and Jena P 2015Proc.Natl.Academy Sci.112 2372
    [30]Wang Q H,Kalantar-Zadeh K,Kis A,Coleman J N and Strano M S2012 Nat.Nanotechnol.7 699
    [31]Liu S J,Du H,Li G L,Li L B,Shi X Q and Liu B B 2018 Phys.Chem.Chem.Phys.20 20615
    [32]Liu S J,Liu B,Shi X H,Lv J Y,Niu S F,Yao M G,Li Q J,Liu R,Cui T and Liu B B 2017 Sci.Rep.7 2404

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700