Crustal strain rates of southeastern Tibetan Plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Crustal strain rates of southeastern Tibetan Plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane
  • 作者:KeLiang ; Zhang ; ShiMing ; Liang ; WeiJun ; Gan
  • 英文作者:KeLiang Zhang;ShiMing Liang;WeiJun Gan;State Key Laboratory of Earthquake Dynamics, Institute of Geology,China Earthquake Administration;
  • 英文关键词:strain rate tensor;;GPS measurement;;lithospheric deformation;;southeastern Tibetan Plateau;;Shan-Thai terrane
  • 中文刊名:DQXW
  • 英文刊名:地球与行星物理(英文)
  • 机构:State Key Laboratory of Earthquake Dynamics, Institute of Geology,China Earthquake Administration;
  • 出版日期:2019-01-15
  • 出版单位:Earth and Planetary Physics
  • 年:2019
  • 期:v.3
  • 基金:partially supported by National Natural Science Foundation of China (grants 41474090 and 41490610);; the financial support by the China Scholarship Council;; the Basic Research Project of Institute of Geology, CEA (IGCEA1314)
  • 语种:英文;
  • 页:DQXW201901006
  • 页数:8
  • CN:01
  • ISSN:10-1502/P
  • 分类号:47-54
摘要
The link between the crustal deformation and mantle kinematics in the Tibetan Plateau has been well known thanks to dense GPS measurements and the relatively detailed anisotropy structure of the lithospheric mantle.However, whether the crust deforms coherently with the upper mantle in the Shan-Thai terrane(also known as the Shan-Thai block) remains unclear.In this study, we investigate the deformation patterns through strain rate tensors in the southeastern Tibetan Plateau derived from the latest GPS measurements and find that in the Shan-Thai terrane the upper crust may be coupled with the lower crust and the upper mantle.The GPS-derived strain rate tensors are in agreement with the slipping patterns and rates of major strike-slip faults in the region.The most prominent shear zone, whose shear strain rates are larger than 100×10~(–9) a~(–1), is about 1000-km-long in the west, trending northward along Sagaing fault to the Eastern Himalayan Syntaxis in the north, with maximum rate of compressive strain up to –240×10~(–9) a~(–1).A secondary shear zone along the Anninghe-Xiaojiang Fault in the east shows segmented shear zones near several conjunctions.While the strain rate along RRF is relatively low due to the low slip rate and low seismicity there, in Lijiang and Tengchong several local shear zones are present under an extensional dominated stress regime that is related to normal faulting earthquakes and volcanism, respectively.Furthermore, by comparing GPS-derived strain rate tensors with earthquake focal mechanisms, we find that 75.8%(100 out of 132) of the earthquake T-axes are consistent with the GPS-derived strain rates.Moreover, we find that the Fast Velocity Direction(FVDs) at three depths beneath the Shan-Thai terrane are consistent with extensional strain rate with gradually increasing angular differences, which are likely resulting from the basal shear forces induced by asthenospheric flow associated with the oblique subduction of the India plate beneath the Shan-Thai terrane.Therefore, in this region the upper crust deformation may be coherent with that of the lower crust and the lithospheric mantle.
        The link between the crustal deformation and mantle kinematics in the Tibetan Plateau has been well known thanks to dense GPS measurements and the relatively detailed anisotropy structure of the lithospheric mantle.However, whether the crust deforms coherently with the upper mantle in the Shan-Thai terrane(also known as the Shan-Thai block) remains unclear.In this study, we investigate the deformation patterns through strain rate tensors in the southeastern Tibetan Plateau derived from the latest GPS measurements and find that in the Shan-Thai terrane the upper crust may be coupled with the lower crust and the upper mantle.The GPS-derived strain rate tensors are in agreement with the slipping patterns and rates of major strike-slip faults in the region.The most prominent shear zone, whose shear strain rates are larger than 100×10~(–9) a~(–1), is about 1000-km-long in the west, trending northward along Sagaing fault to the Eastern Himalayan Syntaxis in the north, with maximum rate of compressive strain up to –240×10~(–9) a~(–1).A secondary shear zone along the Anninghe-Xiaojiang Fault in the east shows segmented shear zones near several conjunctions.While the strain rate along RRF is relatively low due to the low slip rate and low seismicity there, in Lijiang and Tengchong several local shear zones are present under an extensional dominated stress regime that is related to normal faulting earthquakes and volcanism, respectively.Furthermore, by comparing GPS-derived strain rate tensors with earthquake focal mechanisms, we find that 75.8%(100 out of 132) of the earthquake T-axes are consistent with the GPS-derived strain rates.Moreover, we find that the Fast Velocity Direction(FVDs) at three depths beneath the Shan-Thai terrane are consistent with extensional strain rate with gradually increasing angular differences, which are likely resulting from the basal shear forces induced by asthenospheric flow associated with the oblique subduction of the India plate beneath the Shan-Thai terrane.Therefore, in this region the upper crust deformation may be coherent with that of the lower crust and the lithospheric mantle.
引文
Bai,D.H.,Unsworth,M.J.,Meju,M.A.,Ma,X.B.,Teng,J.W.,Kong,X.R.,Sun,Y.,Sun,J.,Wang,L.F.,…Liu,M.(2010).Crustal deformation of the eastern Tibetan Plateau revealed by Magnetotelluric imaging.Nat.Geosci.,3(5),358-362.https://doi.org/10.1038/ngeo830
    Bai,L.,Tian,X.B.,and Ritsema,J.(2010).Crustal structure beneath the Indochina peninsula from teleseismic receiver functions.Geophys.Res.Lett.,37(24),L24308.https://doi.org/10.1029/2010GL044874
    Bendick,R.,and Flesch,L.(2007).Reconciling lithospheric deformation and lower crustal flow beneath central Tibet.Geology,35(10),895-898.https://doi.org/10.1130/G23714A.1
    Chang,L.J.,Flesch,L.M.,Wang,C.Y.,and Ding,Z.F.(2015).Vertical coherence of deformation in lithosphere in the eastern Himalayan syntaxis using GPS,Quaternary fault slip rates,and shear wave splitting data.Geophys.Res.Lett.,42(14),5813-5819.https://doi.org/10.1002/2015GL064568
    Chen,Y.,Zhang,Z.J.,Sun,C.Q.,Badal,J.(2013).Crustal anisotropy from Moho converted Ps wave splitting analysis and geodynamic implications beneaththe eastern margin of Tibet and surrounding regions.Gondwana Research,24(3-4),946-957.https://doi.org/10.1016/j.gr.2012.04.003
    Copley,A.(2008).Kinematics and dynamics of the southeastern margin of the Tibetan Plateau.Geophys.J.Int.,174(3),1081-1100.https://doi.org/10.1111/j.1365-246X.2008.03853.x
    Duong,N.A.,Sagiya,T.,Kimata,F.,To,T.D.,Hai,V.Q.,Cong,D.C.,Binh,N.X.,and Xuyen,N.D.(2013).Contemporary horizontal crustal movement estimation for northwestern Vietnam inferred from repeated GPSmeasurements.Earth Planets Space,65(12),1399-1410.https://doi.org/10.5047/eps.2013.09.010
    Gan,W.J.,Zhang,P.Z.,Shen,Z.K.,Niu,Z.J.,Wang,M.,Wan,Y.G.,Zhou,D.M.,and Cheng,J.(2007).Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements.J.Geophys.Res.,112(B8),B08416.https://doi.org/10.1029/2005JB004120
    Gupta,T.D.,Riguzzi,F.,Dasgupta,S.,Mukhopadhyay,B.,Roy,S.,and Sharma,S.(2015).Kinematics and strain rates of the Eastern Himalayan Syntaxis from new GPS campaigns in Northeast India.Tectonophysics,655,15-26.https://doi.org/10.1016/j.tecto.2015.04.017
    Holt,W.E.,Chamot-Rooke,N.,Le Pichon,X.,Hanies,A.J.,Shen-Tu,B.,and Ren,J.(2000).Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations.J.Geophys.Res.,105(B8),19185-19209.https://doi.org/10.1029/2000JB90004
    Huchon,P.,Le Pichon X.,Rangin,C.(1994).Indochina peninsula and the collision of India and Eurasia.Geology,22,27-30.https://doi.org/10.1130/0091-7613(1994)022<0027:IPATCO>2.3.CO;2
    Huang,Z.C.,Wang,L.S.,Zhao,D.P.,Mi,N.,and Xu,M.J.(2011).Seismic anisotropy and mantle dynamics beneath China.Earth Planet.Sci.Lett.,306(1-2),105-117.https://doi.org/10.1016/j.epsl.2011.03.038
    Lei,J.S.,Zhao,D.P.,and Su,Y.J.(2009).Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data.J.Geophys.Res.,114(B5),B05302.https://doi.org/10.1029/2008JB005881
    Leloup,P.H.,Lacassin,R.,Tapponnier,P.,Sch?rer U,Zhong,D.L.,Zhang,L.S.,Ji,S.C.,and Trinh,P.T.(1995).The Ailao Shan-Red River shear zone(Yunnan,China),Tertiary transform boundary of Indochina.Tectonophysics,251(1-4),3-84.https://doi.org/10.1016/0040-1951(95)00070-4
    Li,C.,Van der Hilst,R.D.,Meltzer,A.S.,and Engdahl,E.R.(2008).Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma.Earth Planet.Sci.Lett.,274(1-2),157-168.https://doi.org/10.1016/j.epsl.2008.07.016
    Li,S.H.,Advokaat,E.L.,van Hinsbergen,D.J.J.,Koymans,M.,Deng,C.L.,and Zhu,R.X.(2017).Paleomagnetic constraints on the Mesozoic-Cenozoic paleolatitudinal and rotational history of Indochina and South China:Review and updated kinematic reconstruction.Earth-Sci.Rev.,171,58-77.https://doi.org/10.1016/j.earscirev.2017.05.007
    Liang,S.M.,Gan,W.J.,Sheng,C.Z.,Xiao,G.R.,Liu,J.,Chen,W.T.,Ding,X.G.,and Zhou,D.M.(2013).Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements.J.Geophy.Res.,118(10),5722-5732.https://doi.org/10.1002/2013JB010503
    Lev,E.,Long,M.,and van der Hilst R.(2006).Seismic anisotropy in Eastern Tibet from shear wave splitting reveals changes in lithospheric deformation.Earth Planet.Sci.Lett.,251,293-304.https://doi.org/10.1016/j.epsl.2006.09.018
    Rangin,C.,Maurin,T.,and Masson,F.(2013).Combined effects of Eurasia/Sunda oblique convergence and East-Tibetan crustal flow on the active tectonics of Burma.J.Asian Earth Sci.,76,185-194.https://doi.org/10.1016/j.jseaes.2013.05.018
    Royden,L.H.,Burchfiel,B.C.,King,R.W.,Wang,E.,Chen,Z.L.,Shen,F.,and Liu,Y.P.(1997).Surface deformation and lower crustal flow in eastern Tibet.Science,276,788-790.https://doi.org/10.1126/science.276.5313.788
    Royden,L.H.,Burchfiel,B.C.,and van der Hilst R.D.(2008).The geological evolution of the Tibetan Plateau.Science,321(5892),1054-1058.https://doi.org/10.1126/science.1155371
    Savage,J.C.,and Burford,R.O.(1973).Geodetic determination of relative plate motion in Central California.J.Geophys.Res.,78(5),832-845.https://doi.org/10.1029/JB078i005p00832
    Shen,Z.K.,Lü,J.N.,Wang,M.,and Bürgmann,R.(2005).Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau.J.Geophys.Res.,110(B11),B11409.https://doi.org/10.1029/2004JB003421
    Shi,X.H.,Wang,Y.,Sieh,K.,Weldon,R.,Feng,L.J.,Chan,C.H.,and Liu-Zeng,J.(2018).Fault slip and GPS velocities across the Shan Plateau define a curved southwestward crustal motion around the Eastern Himalayan Syntaxis.J.Geophys.Res.,123(3),2502-2518.https://doi.org/10.1002/2017JB015206
    Shi,Y.T.,Gao,Y.,Su,Y.J.,and Wang,Q.(2012).Shear-wave splitting beneath Yunnan area of southwest China.Earthq.Sci.,25(1),25-34.https://doi.org/10.1007/s11589-012-0828-4
    Simons,W.J.F.,Socquet,A.,Vigny,C.,Ambrosius,B.A.C.,Abu,S.H.,Promthong,C.,Subarya,C.,Sarsito,D.A.,Matheussen,S.,Morgan,P.,and Spakman,W.(2007).A decade of GPS in southeast Asia:resolving Sundaland motion and boundaries.J.Gephys.Res.,112(B6),B06420.https://doi.org/10.1029/2005JB003868
    Sol,S.,Meltzer,A.,Bürgmann,R.,van der Hilst,R.D.,King,R.,Chen,Z.,Koons,P.O.,Lev,E.,Liu,Y.P.,…Zurek,B.(2007).Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy.Geology,35(6),563-566.https://doi.org/10.1130/G23408A.1
    Sternai,P.,Avouac,J.P.,Jolivet,L.,Faccenna,C.,Gerya,T.,Wolfgang Becker,T.,and Menant,A.(2016).On the influence of the asthenospheric flow on the tectonics and topography at a collision-subduction transition zones:Comparison with the eastern Tibetan margin.J.Geodyn.,100,184-197.https://doi.org/10.1016/j.jog.2016.02.009
    Tanaka,K.,Mu,C.L.,Sato,K.,Takemoto,K.,Miura,D.,Liu,Y.Y.,Zaman,H.,Yang,Z.Y.,Yokoyama,M.,…Otofuji,Y.(2008).Tectonic deformation around the eastern Himalayan syntaxis:Constraints from the Cretaceous palaeomagnetic data of the Shan-Thai Block.Geophy.J.Inter.,175(2),713-728.https://doi.org/10.1111/j.1365-246X.2008.03885.x
    Tape,C.,Musé,P.,Simons,M.,Dong,D.,and Webb,F.(2009).Multiscale estimation of GPS velocity fields.Geophys.J.Int.,179(2),945-971.https://doi.org/10.1111/j.1365-246X.2009.04337.x
    Tapponnier,P.,Peltzer,G.,Le Dain,A.,Armijo,R.,and Cobbold,P.(1982).Propagating extrusion tectonics in Asia:new insights from simple experiments with plasticine.Geology,10(12),611-616.https://doi.org/10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
    Tapponnier,P.,Xu,Z.Q.,Roger,F.,Meyer,B.,Arnaud,N.,Wittlinger G,and Yang,J.S.(2001).Oblique stepwise rise and growth of the Tibet Plateau.Science,294(5547),1671-1677.https://doi.org/10.1126/science.105978
    Tr?n,?.T.,Nguy?n,T.Y.,D??ng,C.C.,Vy,Q.H.,Witold,Z.,Nguy?n,Q.C.,and Nguy?n,V.N..(2013).Recent crustal movements of northern Vietnam from GPS data.J.Geodyn.,69,5-10.https://doi.org/10.1016/j.jog.2012.02.009
    Vigny,C.,Socquet,A.,Rangin,C.,Chamot-Rook,N.,Pubellier,M.,Bouin,M.-N.,Bertrand,G.,Becker,M.(2003).Present-day crustal deformation around Sagaing fault,Myanmar.J.Geophys.Res.,108,B11,2533.https://doi.org/10.1029/2002JB001999
    Wang,C.Y.,Flesch,L.M.,Silver,P.G.,Chang,L.J.,and Chan,W.W.(2008).Evidence for mechanically coupled lithosphere in central Asia and resulting implications.Geology,36(5),363-366.https://doi.org/10.1130/G24450A.1
    Wang,Q.,Zhang,P.Z.,Freymueller,J.T.,Bilham,R.,Larson,K.M.,Lai,X.A.,You,X.Z.,Niu,Z.J.,Wu,J.C.,…Chen,Q.Z.(2001).Present-day crustal deformation in China constrained by global positioning system measurements.Science,294(5542),574-577.https://doi.org/10.1126/science.1063647
    Wang,W.,Qiao,X.J.,Yang,S.M.,and Wang,D.J.(2017).Present-day velocity field and block kinematics of Tibetan plateau from GPS measurements.Geophys.J.Int.,208(2),1088-1102.https://doi.org/10.1093/gji/ggw445
    Wei,W.,Xu,J.D.,Zhao,D.P.,and Shi,Y.L.(2012).East Asia mantle tomography:new insight into plate subduction and intraplate volcanism.J.Asian Earth Sci.,60,88-103.https://doi.org/10.1016/j.jseaes.2012.08.001
    Wei,W.,Zhao,D.P.,Xu,J.D.,Zhou,B.G.,and Shi,Y.L.(2016).Depth variations of P-wave azimuthal anisotropy beneath Mainland China.Sci.Rep.,6,29614.https://doi.org/10.1038/srep29614
    Wessel,P.,and Smith,W.H.F.(1998).New,improved version of Generic Mapping Tools released.Eos,79(47),579.https://doi.org/10.1029/98EO00426
    Wessel,P.,and Becker,J.M.(2008).Interpolation using a generalized Green's function for a spherical surface spline in tension.Geophys.J.Int.,174(1),21-28.https://doi.org/10.1111/j.1365-246X.2008.03829.x
    Yin,A.,and Harrison,T.M.(2000).Geologic evolution of the Himalayan-Tibetan orogen.Annu.Rev.Earth Planet.Sci.,28,211-280.https://doi.org/10.1146/annurev.earth.28.1.211
    Zhang,P.Z.,Deng,Q.D.,Zhang,G.M.,Ma,J.,Gan,W.J.,Min,W.,Mao,F.Y.,and Wang,Q.(2003).Active tectonic blocks and strong earthquakes in the continent of China.Sci.China,Ser.D Earth Sci.,46(S2),13-24.https://doi.org/10.1360/03dz0002
    Zhang,P.Z.,Shen,Z.K.,Wang,M.,Gan,W.J.,Burgmann,R.,Molnar,P.,Wang,Q.,Niu,Z.J.,Sun,J.Z.,You,X.Z.(2004).Continuous deformation of the Tibetan plateau from global positioning system data.Geology,32(9),809-812.https://doi.org/10.1130/G20554.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700