Microstructure and Texture Evolution of Fe-33Mn-3Si-3Al TWIP Steel on Strain
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure and Texture Evolution of Fe-33Mn-3Si-3Al TWIP Steel on Strain
  • 作者:胡洋阳 ; 苏钰 ; FENG ; Xiaoxiao ; CUI ; Haotian ; LI ; Jun
  • 英文作者:HU Yangyang;SU Yu;FENG Xiaoxiao;CUI Haotian;LI Jun;Schoole of Materials Engineering, Shanghai University of Engineering Science;
  • 英文关键词:strain;;microstructure;;texture evolution;;TWIP steel;;strain energy
  • 中文刊名:WLGY
  • 英文刊名:武汉理工大学学报(材料科学版)(英文版)
  • 机构:Schoole of Materials Engineering, Shanghai University of Engineering Science;
  • 出版日期:2019-02-15
  • 出版单位:Journal of Wuhan University of Technology(Materials Science)
  • 年:2019
  • 期:v.34;No.147
  • 基金:Funded by National Natural Science Foundation of China(No.51301105);; Shanghai University of Engineering Science Innovation Fund(No.17KY0516)
  • 语种:英文;
  • 页:WLGY201901028
  • 页数:7
  • CN:01
  • ISSN:42-1680/TB
  • 分类号:180-186
摘要
The microstructure and texture evolution of Fe-33Mn-3Si-3Al twinning induced plasticity(TWIP) steel were studied by the scanning electron microscope(SEM) and X-ray diffraction(XRD) at room temperature. After quasi-static tensile, the texture evolution of different strain was observed. It was shown that the Goss and Brass components increased within the strain range of less than 0.6. Whereas, the main components were decreased when the strain levels were greater than 0.6. This behavior was attributed to the low stacking fault energy(SFE) and was related to the strain energy of this high manganese steel. At high strain levels, the high strain energy may contribute to the Brass components transition to the A(rot-Brass) components.
        The microstructure and texture evolution of Fe-33Mn-3Si-3Al twinning induced plasticity(TWIP) steel were studied by the scanning electron microscope(SEM) and X-ray diffraction(XRD) at room temperature. After quasi-static tensile, the texture evolution of different strain was observed. It was shown that the Goss and Brass components increased within the strain range of less than 0.6. Whereas, the main components were decreased when the strain levels were greater than 0.6. This behavior was attributed to the low stacking fault energy(SFE) and was related to the strain energy of this high manganese steel. At high strain levels, the high strain energy may contribute to the Brass components transition to the A(rot-Brass) components.
引文
[1]Grassel O, Kruger L, Frommeyer G, et al. High Strength Fe-Mn-(Al,Si)TRIP/TWIP Steels Development-Properties Application[J]. International Journal of Plasticity, 2000, 16(10/11):1 391-1 409
    [2]Barbier D, Gey N, Allain S, et al. Analysis of the Tensile Behavior of a TWIP Steel Based on the Texture and Microstructure Evolutions[J].Materials Science and Engineering A, 2009(500):196-206
    [3]Curtze S, Kuokkala V-T. Dependence of Tensile Deformation Behavior of TWIP Steels on Stacking Fault Energy, Temperature and Strain Rate[J]. Acta Materialia, 2010(58):5 129-5 141
    [4]Bracke L, Verbeken K, Kestens L, et al. Microstructure and Texture EvolutionDuringColdRollingand AnnealingofaHighMn TWIP Steel[J]. Acta Materialia, 2009(57):1 512-1 524
    [5]Ahmed ASaleh,Elena VPereloma, Azdiar AGazder. TextureEvolutionofColdRolledand AnnealedFe–24Mn–3Al–2Si–1Ni–0.06C TWIPSteel[J].MaterialsScienceandEngineeringA,2011(528):4 537-4 549
    [6]BrackeL, VerbekenK,Leo AI.Kestens. TextureGenerationand Implications in TWIP Steels[J]. Scripta Materialia, 2012(66):1 007-1 011
    [7]ChristianHaase,SandipGhoshChowdhury,Luis ABarrales-mora,et al. On the Relation of Microstructure and Texture Evolution in an Austenitic Fe-28Mn-0.28C TWIP Steel During Cold Rolling[J]. Metallurgical and Materials Transactions A, 2012(44):911-922
    [8]SU Yu,LILin,FURen-yu. Through-Thickness TextureGradientin Hot-Rolled 25Mn-2.5Si-2Al TWIP Steel[J]. Journal of Iron and Steel Research International, 2013, 20(4):46-53
    [9]Joanna Kowalska, Wiktoria Ratuszek, Ma?gorzata Witkowska, et al.DevelopmentofMicrostructureand TextureinFe–26Mn–3Si–3Al AlloyDuringCold-Rollingand Annealing[J].Journalof Alloysand Compounds, 2014(615):S583-S586
    [10]Tewary NK,Ghosh SK, Supriya Bera, et al. Influence of Cold RollingonMicrostructure, TextureandMechanicalPropertiesofLow Carbon High Mn TWIP Steel[J]. Materials Science&Engineering A,2014(615):405-415
    [11]XIONG Rong-gang, FU Ren-yu, SU Yu, et al. Fracture Mechanism of TWIPSteelunderDynamic TensileCondition[J].ShanghaiMetals,2008, 30(5):12-15(in Chinese)
    [12]XIONGRong-gang,FURen-yu,SU Yu,etal. TensilePropertiesof TWIP Steel at High Strain Rate[J]. Jour.nal of Iron and Steel Research.International, 2009, 16(1):81-86, 21
    [13]LIDa-zhao, WEI Ying-hui,LIUChun-yue,etal.EffectsofHigh Strain Rate on Properties and Microstructure Evolution of TWIP Steel Subjected to Impact Loading[J]. Journal of Iron and Steel Research International, 2010, 17(6):67-73
    [14]Puspendu Sahu, Sven Curtze, Arpan Das, et al. Stability of Austenite and Quasi-Adiabatic Heating During High-Strain-Rate Deformation of Twinning-Induced Plasticity Steels[J]. Scripta Materialia, 2010(62):5-8
    [15]FANG Xiuhui, YANG Ping, LU Fayun, et al. Dependence of Deformation Twinning on Grain Orientation and Texture Evolution of High Manganese TWIPSteelsatDifferentDeformation Temperatures[J].Journal of Iron and Steel Research International, 2011, 18(11):46-52
    [16]TANG Zhengyou, WU Zhiqiang, ZAN Na, et al. Microstructure EvolutionandDeformationBehaviorofHighManganese TRIP/TWIP Symbiotic Effect Steels under High-Speed Deformation[J]. Acta Metallurgica Sinica, 2011, 47(11):1 426-1 433(in Chinese)
    [17]Barbier D, Favier V, Bolle B. Modeling the Deformation Textures and Microstructural Evolutions of a Fe–Mn–C TWIP Steel during Tensile and Shear Testing[J]. Materials Science and Engineering A, 2012(540):212-225
    [18]XIONG Zhiping, REN Xueping, BAO Weiping, et al. Effect of High Temperature and High Strain Rate on the Dynamic Mechanical PropertiesofFe-30Mn-3Si-4Al TWIPSteel[J].InternationalJournalof Minerals, Metallurgy and Materials, 2013, 20(9):835-841
    [19]XIONG Zhiping, REN Xueping, SHU Jian, et al. Effect of Temperature on Microstructure and Deformation Mechanism of Fe-30Mn-3Si-4Al TWIP Steel at Strain Rate of 700 s-1[J]. Journal of Iron and Steel Research, International, 2015, 22(2):179-184
    [20]Shen Y F, Jia N, Misra RDK, et al. Softening Behavior by Excessive Twinning and Adiabatic Heating at High Strain Rate in a Fe–20Mn–0.6C TWIP Steel[J]. Acta Materialia, 2016(103):229-242
    [21]Allain S, ChateauJ P, Dahmounb D, et al. Modeling of Mechanical Twinning in a High Manganese Content Austenitic Steel[J]. Materials Science and Engineering, 2004(A 387-389):272-276
    [22]Hirsch J, Lücke K, Hatherly M. Overview No. 76:Mechanism of Deformation and Development of Rolling Textures in Polycrystalline f.c.c.Metals—III. The Influence of Slip Inhomogeneities and Twinning[J].Acta Metall., 1988, 36(11):2 905-2 927
    [23]VenablesJ A.Deformation TwinninginfccMaterial[C].In:R.E.Reed-Hill. Metallurgical Society Conferences., 1963
    [24]Meyers M A, Vohringer O, Lubarda V A. The Onset of Twinning in Metals:aConstitutiveDescription[J].ActaMater.,2001,14(49):4 025-4 039
    [25]WU Zhiqiang, TANG Zhengyou, LI Huaying, et al. Effect of Strain Rate on Microstructure Evolution and Mechanical Behavior of a Low CHighMn TRIP/TWIPSteel[J].ActaMetallurgicaSinica,2012,48(5):593-600(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700