Transcriptional changes in mesenteric and subcutaneous adipose tissue from Holstein cows in response to plane of dietary energy
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Transcriptional changes in mesenteric and subcutaneous adipose tissue from Holstein cows in response to plane of dietary energy
  • 作者:S.J.Moisá ; P.Ji ; J.K.Drackley ; S.L.Rodriguez-Zas ; J.J.Loor
  • 英文作者:S.J.Moisá;P.Ji;J.K.Drackley;S.L.Rodriguez-Zas;J.J.Loor;Department of Animal Sciences, Auburn University;Department of Animal Sciences, University of Illinois;
  • 英文关键词:Adipose tissue;;Dairy cow;;Dietary energy;;Transcriptome
  • 中文刊名:XMSW
  • 英文刊名:畜牧与生物技术杂志(英文版)
  • 机构:Department of Animal Sciences, Auburn University;Department of Animal Sciences, University of Illinois;
  • 出版日期:2018-03-15
  • 出版单位:Journal of Animal Science and Biotechnology
  • 年:2018
  • 期:v.9
  • 语种:英文;
  • 页:XMSW201801024
  • 页数:15
  • CN:01
  • ISSN:11-5967/S
  • 分类号:237-251
摘要
Background: Dairy cows can readily overconsume dietary energy during most of the prepartum period, often leading to higher prepartal concentrations of insulin and glucose and excessive body fat deposition. The end result of these physiologic changes is greater adipose tissue lipolysis post-partum coupled with excessive hepatic lipid accumulation and compromised health. Although transcriptional regulation of the adipose response to energy availability is well established in non-ruminants, such regulation in cow adipose tissue depots remains poorly characterized.Results: Effects of ad-libitum access to high [HIGH; 1.62 Mcal/kg of dry matter(DM)] or adequate(CON; 1.35 Mcal/kg of DM) dietary energy for 8 wk on mesenteric(MAT) and subcutaneous(SAT) adipose tissue transcript profiles were assessed in non-pregnant non-lactating Holstein dairy cows using a 13,000-sequence annotated bovine oligonucleotide microarray. Statistical analysis revealed 409 and 310 differentially expressed genes(DEG) due to tissue and diet. Bioinformatics analysis was conducted using the Dynamic Impact Approach(DIA) with the KEGG pathway database. Compared with SAT, MAT had more active biological processes related to adipose tissue accumulation(adiponectin secretion) and signs of pro-inflammatory processes due to adipose tissue expansion and macrophage infiltration(generation of ceramides). Feeding the HIGH diet led to changes in m RNA expression of genes associated with cell hypertrophy(regucalcin), activation of adipogenesis(phospholipid phosphatase 1),insulin signaling activation(neuraminidase 1) and angiogenesis(semaphorin 4 G, plexin B1). Further, inflammation due to HIGH was underscored by m RNA expression changes associated with oxidative stress response(coenzyme Q3, methyltransferase), ceramide synthesis(N-acylsphingosine amidohydrolase 1), and insulin signaling(interferon regulatory factor 1, phosphoinositide-3-kinase regulatory subunit 1, retinoic acid receptor alpha). Activation of ribosome in cows fed HIGH indicated the existence of greater adipocyte growth rate(M-phase phosphoprotein 10,NMD3 ribosome export adaptor).Conclusions: The data indicate that long-term ad-libitum access to a higher-energy diet led to transcriptional changes in adipose tissue that stimulated hypertrophy and the activity of pathways associated with a slight but chronic inflammatory response. Further studies would be helpful in determining the extent to which m RNA results also occur at the protein level.
        Background: Dairy cows can readily overconsume dietary energy during most of the prepartum period, often leading to higher prepartal concentrations of insulin and glucose and excessive body fat deposition. The end result of these physiologic changes is greater adipose tissue lipolysis post-partum coupled with excessive hepatic lipid accumulation and compromised health. Although transcriptional regulation of the adipose response to energy availability is well established in non-ruminants, such regulation in cow adipose tissue depots remains poorly characterized.Results: Effects of ad-libitum access to high [HIGH; 1.62 Mcal/kg of dry matter(DM)] or adequate(CON; 1.35 Mcal/kg of DM) dietary energy for 8 wk on mesenteric(MAT) and subcutaneous(SAT) adipose tissue transcript profiles were assessed in non-pregnant non-lactating Holstein dairy cows using a 13,000-sequence annotated bovine oligonucleotide microarray. Statistical analysis revealed 409 and 310 differentially expressed genes(DEG) due to tissue and diet. Bioinformatics analysis was conducted using the Dynamic Impact Approach(DIA) with the KEGG pathway database. Compared with SAT, MAT had more active biological processes related to adipose tissue accumulation(adiponectin secretion) and signs of pro-inflammatory processes due to adipose tissue expansion and macrophage infiltration(generation of ceramides). Feeding the HIGH diet led to changes in m RNA expression of genes associated with cell hypertrophy(regucalcin), activation of adipogenesis(phospholipid phosphatase 1),insulin signaling activation(neuraminidase 1) and angiogenesis(semaphorin 4 G, plexin B1). Further, inflammation due to HIGH was underscored by m RNA expression changes associated with oxidative stress response(coenzyme Q3, methyltransferase), ceramide synthesis(N-acylsphingosine amidohydrolase 1), and insulin signaling(interferon regulatory factor 1, phosphoinositide-3-kinase regulatory subunit 1, retinoic acid receptor alpha). Activation of ribosome in cows fed HIGH indicated the existence of greater adipocyte growth rate(M-phase phosphoprotein 10,NMD3 ribosome export adaptor).Conclusions: The data indicate that long-term ad-libitum access to a higher-energy diet led to transcriptional changes in adipose tissue that stimulated hypertrophy and the activity of pathways associated with a slight but chronic inflammatory response. Further studies would be helpful in determining the extent to which m RNA results also occur at the protein level.
引文
1.Sundrum A.Metabolic disorders in the transition period indicate that the dairy cows'ability to adapt is overstressed.Animals(Basel).2015;5(4):978-1020.
    2.Drackley JK,Wallace RL,Graugnard D,Vasquez J,Richards BF,Loor JJ.Visceral adipose tissue mass in nonlactating dairy cows fed diets differing in energy density.J Dairy Sci.2014;97(6):3420-30.
    3.Dann HM,Litherland NB,Underwood JP,Bionaz M,D'Angelo A,Mc Fadden JW,et al.Diets during far-off and close-up dry periods affect periparturient metabolism and lactation in multiparous cows.J Dairy Sci.2006;89(9):3563-77.
    4.Janovick NA,Boisclair YR,Drackley JK.Prepartum dietary energy intake affects metabolism and health during the periparturient period in primiparous and multiparous Holstein cows.J Dairy Sci.2011;94(3):1385-400.
    5.Hauner H.The new concept of adipose tissue function.Physiol Behav.2004;83(4):653-8.
    6.Ibrahim MM.Subcutaneous and visceral adipose tissue:structural and functional differences.Obes Rev.2010;11(1):11-8.
    7.Ji P,Drackley JK,Khan MJ,Loor JJ.Inflammation-and lipid metabolismrelated gene network expression in visceral and subcutaneous adipose depots of Holstein cows.J Dairy Sci.2014;97(6):3441-8.
    8.Contreras GA,Thelen K,Schmidt SE,Strieder-Barboza C,Preseault CL,Raphael W,et al.Adipose tissue remodeling in late-lactation dairy cows during feed-restriction-induced negative energy balance.J Dairy Sci.2016;99(12):10009-21.
    9.Akter SH,Haussler S,Germeroth D,von Soosten D,Danicke S,Sudekum KH,et al.Immunohistochemical characterization of phagocytic immune cell infiltration into different adipose tissue depots of dairy cows during early lactation.J Dairy Sci.2012;95(6):3032-44.
    10.Contreras GA,Strieder-Barboza C,Raphael W.Adipose tissue lipolysis and remodeling during the transition period of dairy cows.J Anim Sci Biotechnol.2017;8:41.
    11.Weisberg SP,Mc Cann D,Desai M,Rosenbaum M,Leibel RL,Ferrante AW Jr.Obesity is associated with macrophage accumulation in adipose tissue.JClin Invest.2003;112(12):1796-808.
    12.Khan MJ,Hosseini A,Burrell S,Rocco SM,Mc Namara JP,Loor JJ.Change in subcutaneous adipose tissue metabolism and gene network expression during the transition period in dairy cows,including differences due to sire genetic merit.J Dairy Sci.2013;96(4):2171-82.
    13.Ji P,Drackley JK,Khan MJ,Loor JJ.Overfeeding energy upregulates peroxisome proliferator-activated receptor(PPAR)gamma-controlled adipogenic and lipolytic gene networks but does not affect proinflammatory markers in visceral and subcutaneous adipose depots of Holstein cows.J Dairy Sci.2014;97(6):3431-40.
    14.Wright IA,Russel AJF.Partition of fat,body composition and body condition score in mature cows.Anim Prod.1984;38:23-32.
    15.Graugnard DE,Berger LL,Faulkner DB,Loor JJ.High-starch diets induce precocious adipogenic gene network up-regulation in longissimus lumborum of early-weaned Angus cattle.Br J Nutr.2010;103(7):953-63.
    16.Loor JJ,Everts RE,Bionaz M,Dann HM,Morin DE,Oliveira R,et al.Nutritioninduced ketosis alters metabolic and signaling gene networks in liver of periparturient dairy cows.Physiol Genomics.2007;32(1):105-16.
    17.Bionaz M,Loor JJ.Gene networks driving bovine milk fat synthesis during the lactation cycle.BMC Genomics.2008;9:366.
    18.Bionaz M,Periasamy K,Rodriguez-Zas SL,Hurley WL,Loor JJ.A novel dynamic impact approach(DIA)for functional analysis of time-course omics studies:validation using the bovine mammary transcriptome.PLo S One.2012;7(3):e32455.
    19.Moisa SJ,Shike DW,Graugnard DE,Rodriguez-Zas SL,Everts RE,Lewin HA,et al.Bioinformatics analysis of transcriptome dynamics during growth in angus cattle longissimus muscle.Bioinform Biol Insights.2013;7:253-70.
    20.Gawronska-Kozak B,Staszkiewicz J,Gimble JM,Kirk-Ballard H.Recruitment of fat cell precursors during high fat diet in C57BL/6J mice is fat depot specific.Obesity(Silver Spring).2014;22(4):1091-102.
    21.Smith SB,Crouse JD.Relative contributions of acetate,lactate and glucose to lipogenesis in bovine intramuscular and subcutaneous adipose tissue.JNutr.1984;114(4):792-800.
    22.Wan R,Du J,Ren L,Meng Q.Selective adipogenic effects of propionate on bovine intramuscular and subcutaneous preadipocytes.Meat Sci.2009;82(3):372-8.
    23.Giorgino F,Laviola L,Eriksson JW.Regional differences of insulin action in adipose tissue:insights from in vivo and in vitro studies.Acta Physiol Scand.2005;183(1):13-30.
    24.Banerjee R,Zou CG.Redox regulation and reaction mechanism of human cystathionine-beta-synthase:a PLP-dependent hemesensor protein.Arch Biochem Biophys.2005;433(1):144-56.
    25.Xue GP,Snoswell AM.Developmental changes in the activities of enzymes related to methyl group metabolism in sheep tissues.Comp Biochem Physiol B.1986;83(1):115-20.
    26.Lin CC,Yin MC,Hsu CC,Lin MP.Effect of five cysteine-containing compounds on three lipogenic enzymes in Balb/c A mice consuming a high saturated fat diet.Lipids.2004;39(9):843-8.
    27.Jacometo CB,Zhou Z,Luchini D,Correa MN,Loor JJ.Maternal supplementation with rumen-protected methionine increases prepartal plasma methionine concentration and alters hepatic m RNA abundance of1-carbon,methionine,and transsulfuration pathways in neonatal Holstein calves.J Dairy Sci.2017;100(4):3209-19.
    28.Lin S,Hirai S,Yamaguchi Y,Goto T,Takahashi N,Tani F,et al.Taurine improves obesity-induced inflammatory responses and modulates the unbalanced phenotype of adipose tissue macrophages.Mol Nutr Food Res.2013;57(12):2155-65.
    29.Liu R,Pulliam DA,Liu Y,Salmon AB.Dynamic differences in oxidative stress and the regulation of metabolism with age in visceral versus subcutaneous adipose.Redox Biol.2015;6:401-8.
    30.Hausman GJ.Meat science and muscle biology symposium:the influence of extracellular matrix on intramuscular and extramuscular adipogenesis.JAnim Sci.2012;90(3):942-9.
    31.Khan T,Muise ES,Iyengar P,Wang ZV,Chandalia M,Abate N,et al.Metabolic dysregulation and adipose tissue fibrosis:role of collagen VI.Mol Cell Biol.2009;29(6):1575-91.
    32.Lee HJ,Jang M,Kim H,Kwak W,Park W,Hwang JY,et al.Comparative transcriptome analysis of adipose tissues reveals that ECM-receptor interaction is involved in the depot-specific Adipogenesis in cattle.PLo SOne.2013;8(6):e66267.
    33.Beedholm-Ebsen R,van de Wetering K,Hardlei T,Nexo E,Borst P,Moestrup SK.Identification of multidrug resistance protein 1(MRP1/ABCC1)as a molecular gate for cellular export of cobalamin.Blood.2010;115(8):1632-9.
    34.Stanislawska-Sachadyn A,Woodside JV,Sayers CM,Yarnell JW,Young IS,Evans AE,et al.The transcobalamin(TCN2)776C>G polymorphism affects homocysteine concentrations among subjects with low vitamin B(12)status.Eur J Clin Nutr.2010;64(11):1338-43.
    35.Girard CL,Santschi DE,Stabler SP,Allen RH.Apparent ruminal synthesis and intestinal disappearance of vitamin B12 and its analogs in dairy cows.JDairy Sci.2009;92(9):4524-9.
    36.Vernon RG.Lipid metabolism in the adipose tissue of ruminant animals.Prog Lipid Res.1980;19(1-2):23-106.
    37.Rinaldo P,Matern D,Bennett MJ.Fatty acid oxidation disorders.Annu Rev Physiol.2002;64:477-502.
    38.Ceddia RB.Direct metabolic regulation in skeletal muscle and fat tissue by leptin:implications for glucose and fatty acids homeostasis.Int J Obes.2005;29(10):1175-83.
    39.Hosseini A,Tariq MR,Trindade da Rosa F,Kesser J,Iqbal Z,Mora O,et al.Insulin sensitivity in adipose and skeletal muscle tissue of dairy cows in response to dietary energy level and 2,4-thiazolidinedione(TZD).PLo S One.2015;10(11):e0142633.
    40.Kolak M,Gertow J,Westerbacka J,Summers SA,Liska J,Franco-Cereceda A,et al.Expression of ceramide-metabolising enzymes in subcutaneous and intra-abdominal human adipose tissue.Lipids Health Dis.2012;11:115.
    41.Rico JE,Bandaru VV,Dorskind JM,Haughey NJ,Mc Fadden JW.Plasma ceramides are elevated in overweight Holstein dairy cows experiencing greater lipolysis and insulin resistance during the transition from late pregnancy to early lactation.J Dairy Sci.2015;98(11):7757-70.
    42.Samad F,Hester KD,Yang G,Hannun YA,Bielawski J.Altered adipose and plasma sphingolipid metabolism in obesity:a potential mechanism for cardiovascular and metabolic risk.Diabetes.2006;55(9):2579-87.
    43.Nixon GF.Sphingolipids in inflammation:pathological implications and potential therapeutic targets.Br J Pharmacol.2009;158(4):982-93.
    44.Bikman BT.A role for sphingolipids in the pathophysiology of obesityinduced inflammation.Cell Mol Life Sci.2012;69(13):2135-46.
    45.Schutze S,Potthoff K,Machleidt T,Berkovic D,Wiegmann K,Kronke M.TNFactivates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced"acidic"sphingomyelin breakdown.Cell.1992;71(5):765-76.
    46.Mullen TD,Hannun YA,Obeid LM.Ceramide synthases at the centre of sphingolipid metabolism and biology.Biochem J.2012;441(3):789-802.
    47.Moisa S,Shike D,Shoup L,Rodriguez-Zas S,Loor J.Maternal plane of nutrition during late gestation and weaning age alter Angus x Simmental offspring longissimus muscle transcriptome and intramuscular fat.PLo SOne.2015;10(7):e0131478.
    48.Yamaguchi M.Regucalcin and cell regulation:role as a suppressor protein in signal transduction.Mol Cell Biochem.2011;353(1-2):101-37.
    49.Shi H,Halvorsen YD,Ellis PN,Wilkison WO,Zemel MB.Role of intracellular calcium in human adipocyte differentiation.Physiol Genomics.2000;3(2):75-82.
    50.Pershadsingh HA,Mc Donald JM.Direct addition of insulin inhibits a high affinity Ca2+-ATPase in isolated adipocyte plasma membranes.Nature.1979;281(5731):495-7.
    51.Tomsig JL,Snyder AH,Berdyshev EV,Skobeleva A,Mataya C,Natarajan V,et al.Lipid phosphate phosphohydrolase type 1(LPP1)degrades extracellular lysophosphatidic acid in vivo.Biochem J.2009;419(3):611-8.
    52.Saulnier-Blache JS.Secretion and role of autotaxin and lysophosphatidic acid in adipose tissue.J Soc Biol.2006;200(1):77-81.
    53.Dusaulcy R,Rancoule C,Gres S,Wanecq E,Colom A,Guigne C,et al.Adipose-specific disruption of autotaxin enhances nutritional fattening and reduces plasma lysophosphatidic acid.J Lipid Res.2011;52(6):1247-55.
    54.Zhu Y,Wu B,Zhang X,Fan X,Niu L,Li X,et al.Structural and biochemical studies reveal Ubi G/Coq3 as a class of novel membrane-binding proteins.Biochem J.2015;470(1):105-14.
    55.Tran UC,Clarke CF.Endogenous synthesis of coenzyme Q in eukaryotes.Mitochondrion.2007;7(Suppl):S62-71.
    56.Alam MA,Rahman MM.Mitochondrial dysfunction in obesity:potential benefit and mechanism of co-enzyme Q10 supplementation in metabolic syndrome.J Diabetes Metab Disord.2014;13:60.
    57.Yamaguchi M,Matsui M,Higa R,Yamazaki Y,Ikari A,Miyake M,et al.Aplatelet-activating factor(PAF)receptor deficiency exacerbates diet-induced obesity but PAF/PAF receptor signaling does not contribute to the development of obesity-induced chronic inflammation.Biochem Pharmacol.2015;93(4):482-95.
    58.Menezes-Garcia Z,Oliveira MC,Lima RL,Soriani FM,Cisalpino D,Botion LM,et al.Lack of platelet-activating factor receptor protects mice against dietinduced adipose inflammation and insulin-resistance despite fat pad expansion.Obesity(Silver Spring).2014;22(3):663-72.
    59.Snyder F.Metabolic processing of PAF.Clin Rev Allergy.1994;12(4):309-27.
    60.Stafforini DM,Mc Intyre TM,Zimmerman GA,Prescott SM.Platelet-activating factor acetylhydrolases.J Biol Chem.1997;272(29):17895-8.
    61.Nusing RM,Barsig J.Induction of prostanoid,nitric oxide,and cytokine formation in rat bone marrow derived macrophages by activin a.Br JPharmacol.1999;127(4):919-26.
    62.Phil ips DJ,de Kretser DM,Hedger MP.Activin and related proteins in inflammation:not just interested bystanders.Cytokine Growth Factor Rev.2009;20(2):153-64.
    63.Sydow K,Mondon CE,Cooke JP.Insulin resistance:potential role of the endogenous nitric oxide synthase inhibitor ADMA.Vasc Med.2005;10(Suppl 1):S35-43.
    64.Boisvert FM,van Koningsbruggen S,Navascues J,Lamond AI.The multifunctional nucleolus.Nat Rev Mol Cell Biol.2007;8(7):574-85.
    65.Dragon F,Gallagher JE,Compagnone-Post PA,Mitchell BM,Porwancher KA,Wehner KA,et al.A large nucleolar U3 ribonucleoprotein required for 18Sribosomal RNA biogenesis.Nature.2002;417(6892):967-70.
    66.Sardana R,White JP,Johnson AW.The r RNA methyltransferase Bud23 shows functional interaction with components of the SSU processome and RNase MRP.RNA.2013;19(6):828-40.
    67.West M,Hedges JB,Lo KY,Johnson AW.Novel interaction of the 60Sribosomal subunit export adapter Nmd3 at the nuclear pore complex.J Biol Chem.2007;282(19):14028-37.
    68.Saint M,Sawhney S,Sinha I,Singh RP,Dahiya R,Thakur A,et al.The TAF9 C-terminal conserved region domain is required for SAGA and TFIID promoter occupancy to promote transcriptional activation.Mol Cell Biol.2014;34(9):1547-63.
    69.Moisa SJ,Shike DW,Meteer WT,Keisler D,Faulkner DB,Loor JJ.Yin yang 1and adipogenic gene network expression in longissimus muscle of beef cattle in response to nutritional management.Gene Regul Syst Bio.2013;7:71-83.
    70.Ainbinder E,Revach M,Wolstein O,Moshonov S,Diamant N,Dikstein R.Mechanism of rapid transcriptional induction of tumor necrosis factor alpha-responsive genes by NF-kappa B.Mol Cell Biol.2002;22(18):6354-62.
    71.Hogan PG,Chen L,Nardone J,Rao A.Transcriptional regulation by calcium,calcineurin,and NFAT.Genes Dev.2003;17(18):2205-32.
    72.Yang TT,Suk HY,Yang X,Olabisi O,RY Y,Durand J,et al.Role of transcription factor NFAT in glucose and insulin homeostasis.Mol Cell Biol.2006;26(20):7372-87.
    73.Kim HB,Kumar A,Wang L,Liu GH,Keller SR,Lawrence JC,Jr.,et al.(2010)Lipin 1 represses NFATc4 transcriptional activity in adipocytes to inhibit secretion of inflammatory factors.Mol Cell Biol 30(12):3126-3139.
    74.Ranjan R,Deng J,Chung S,Lee YG,Park GY,Xiao L,et al.The transcription factor nuclear factor of activated T cells c3 modulates the function of macrophages in sepsis.J Innate Immun.2014;6(6):754-64.
    75.Kim SP,Ha JM,Yun SJ,Kim EK,Chung SW,Hong KW,et al.Transcriptional activation of peroxisome proliferator-activated receptor-gamma requires activation of both protein kinase a and Akt during adipocyte differentiation.Biochem Biophys Res Commun.2010;399(1):55-9.
    76.Kim YJ,Kim HJ,Chung KY,Choi I,Kim SH.Transcriptional activation of PIK3R1 by PPARgamma in adipocytes.Mol Biol Rep.2014;41(8):5267-72.
    77.Jascur T,Gilman J,Mustelin T.Involvement of phosphatidylinositol 3-kinase in NFAT activation in T cells.J Biol Chem.1997;272(22):14483-8.
    78.Rhoads RP,Kim JW,Van Amburgh ME,Ehrhardt RA,Frank SJ,Boisclair YR.Effect of nutrition on the GH responsiveness of liver and adipose tissue in dairy cows.J Endocrinol.2007;195(1):49-58.
    79.Dridi L,Seyrantepe V,Fougerat A,Pan X,Bonneil E,Thibault P,et al.Positive regulation of insulin signaling by neuraminidase 1.Diabetes.2013;62(7):2338-46.
    80.Nogi T,Yasui N,Mihara E,Matsunaga Y,Noda M,Yamashita N,et al.Structural basis for semaphorin signalling through the plexin receptor.Nature.2010;467(7319):1123-7.
    81.Basile JR,Afkhami T,Gutkind JS.Semaphorin 4D/plexin-B1 induces endothelial cell migration through the activation of PYK2,Src,and the phosphatidylinositol3-kinase-Akt pathway.Mol Cell Biol.2005;25(16):6889-98.
    82.Ledoux S,Queguiner I,Msika S,Calderari S,Rufat P,Gasc JM,et al.Angiogenesis associated with visceral and subcutaneous adipose tissue in severe human obesity.Diabetes.2008;57(12):3247-57.
    83.Urs S,Turner B,Tang Y,Rostama B,Small D,Liaw L.Effect of soluble Jagged1-mediated inhibition of notch signaling on proliferation and differentiation of an adipocyte progenitor cell model.Adipocyte.2012;1(1):46-57.
    84.Pang C,Gao Z,Yin J,Zhang J,Jia W,Ye J.Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity.Am J Physiol Endocrinol Metab.2008;295(2):E313-22.
    85.Vikis HG,Li W,He Z,Guan KL.The semaphorin receptor plexin-B1specifically interacts with active Rac in a ligand-dependent manner.Proc Natl Acad Sci U S A.2000;97(23):12457-62.
    86.Fromel T,Kohlstedt K,Popp R,Yin X,Awwad K,Barbosa-Sicard E,et al.Cytochrome P4502S1:a novel monocyte/macrophage fatty acid epoxygenase in human atherosclerotic plaques.Basic Res Cardiol.2013;108(1):319.
    87.YK O,Eun JS,Lee SC,Chu GM,Lee SS,Moon YH.Responses of blood glucose,insulin,glucagon,and fatty acids to intraruminal infusion of propionate in hanwoo.Asian-Australas J Anim Sci.2015;28(2):200-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700