环氧树脂及其复合材料交联结构和宏观性能的分子模拟研究与进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Molecular simulation research and development of cross-linked structure and macroscopic properties of epoxy resin and its composites
  • 作者:张文卿 ; 李肇晨 ; 吴天宇 ; 吕晟东 ; 隋刚
  • 英文作者:ZHANG Wenqing;LI Zhaochen;WU Tianyu;LV Shengdong;SUI Gang;State Key Laboratory of Organic-Inorganic Composites,Beijing University of Chemical Technology;
  • 关键词:环氧树脂 ; 分子模拟 ; 碳纤维 ; 复合材料 ; 纳米材料
  • 英文关键词:epoxy resin;;molecular simulations;;carbon fibers;;composites;;nano-materials
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:北京化工大学有机无机复合材料国家重点实验室;
  • 出版日期:2018-09-14 13:42
  • 出版单位:复合材料学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(U1664251;51873011)
  • 语种:中文;
  • 页:FUHE201902001
  • 页数:8
  • CN:02
  • ISSN:11-1801/TB
  • 分类号:7-14
摘要
分子模拟技术能够从原子尺度探究聚合物体系的反应机制和内部结构的微观参数,从而讨论对聚合物基复合材料的宏观性能等方面的影响因素。本文围绕环氧树脂基复合材料的材料体系设计和结构-性能的关联性研究,总结了当前国内外应用分子模拟技术针对环氧树脂基体交联网络结构、纳米粒子增强环氧树脂机制的研究结果。同时,介绍了国内外运用分子模拟方法,针对碳纤维/环氧树脂复合材料的微观界面及结构设计等科学问题开展研究的最新成果,并提出了分子模拟方法在高性能聚合物基复合材料未来发展中的指导意义和研究策略。
        Molecular simulation technology can explore the reaction mechanism and the microscopic parameters of internal structure of polymer systems from the atomic scale to discuss the factors affecting the macroscopic properties of polymer composites.In this paper,the material system design and structure-performance correlation of epoxy resin matrix composites were studied.The current research of molecular simulation technology for the cross-linked network structure of epoxy resin and the mechanism of nanoparticle reinforced epoxy resin systems were summarized.The latest research results of scientific issues such as micro-interface and structural design of carbon fiber/epoxy composites were introduced,and the guiding significance and research strategy of molecular simulation methods in the future development of high-performance polymer matrix composites were proposed.
引文
[1] LI R,LACHMAN N,FLORIN P. Hierarchical carbon nanotube carbon fiber unidirectional composites with preserved tensile and interfacial properties[J].Composites Science and Technology,2015,117:139-145.
    [2] SUBRAMANIAN A S,TEY J N,ZHANG L Y,et al.Synergistic bond strengthening in epoxy adhesives using polydopamine/MWCNT hybrids[J].Polymer,2016,82:285-294.
    [3] ZHANG Q J,WU J Q,GAO L,et al.Influence of a liquidlike MWCNT reinforcement on interfacial and mechanical properties of carbon fiber filament winding composites[J].Polymer,2016,90:193-203.
    [4] KARATRANTOS A,CLARKE N,KROGER M.Modeling of polymer structure and conformations in polymer nanocomposites from atomistic to mesoscale:A review[J].Polymer Reviews,2016,56(3):385-428.
    [5] LIU H,LI M,LU Z Y,et al.Multiscale simulation study on the curing reaction and the network structure in a typical epoxy system[J].Macromolecules,2011,44:8650-8660.
    [6] LI M,GU Y Z,LIU H,et al.Investigation the interphase formation process of carbon fiber/epoxy composites using a multiscale simulation method[J].Composites Science and Technology,2013,86:117-121.
    [7] GAVRILOV A A,KOMAROV P V,KHALATUR P G.Thermal properties and topology of epoxy networks:A multiscale simulation methodology[J].Macromolecules,2015,48:206-212.
    [8] KIM B,CHOI J,YANG S.Multiscale modeling of interphase in crosslinked epoxy nanocomposites[J].Composites Part B:Engineering,2017,120:128-142.
    [9] KHARE K S,KHARE R.Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy-carbon nanotube nanocomposites:Role of interfacial interactions[J]. The Journal of Physical Chemistry B,2013,117:7444-7454.
    [10] GU H,TADAKAMALLA S,ZHANG X,et al.Epoxy resin nanosuspensions and reinforced nanocomposites from polyaniline stabilized multi-walled carbon nanotubes[J].Journal of Materials Chemistry C,2012,1(4):729-743.
    [11] BAO C,GUO Y,SONG L,et al.In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements[J].Journal of Materials Chemistry,2011,21(35):13290-13298.
    [12] VARSHNEY V,PATNAIK S S,ROY A K,et al.A molecular dynamics study of epoxy-based networks:Cross-linking procedure and prediction of molecular and material properties[J].Macromolecules,2008,41:6837-6842.
    [13] YANG Q,YANG X P,LI X D,et al.The curing and thermal transition behavior of epoxy resin:A molecular simulation and experimental study[J].RSC Advances,2013,3:7452-7459.
    [14] YANG Q,LI X D,SHI L,et al.The thermal characteristics of epoxy resin:Design and predict by using molecular simulation method[J].Polymer,2013,54:6447-6454.
    [15] GAO L,ZHANG Q J,SUI G,et al.Effect of epoxy monomer structure on the curing process and thermo-mechanical characteristics of tri-functional epoxy/amine systems:A methodology combined atomistic molecular simulation with experimental analyses[J].Polymer Chemistry,2017,8:2016-2027.
    [16] GAVRILOV A A,KOMAROV P V,KHALATUR P G.Thermal properties and topology of epoxy networks:A multiscale simulation methodology[J].Macromolecules,2015,48:206-212.
    [17] LI C Y,STRACHAN A.Evolution of network topology of bifunctional epoxy thermosets during cure and its relationship to thermo-mechanical properties:A molecular dynamics study[J].Polymer,2015,75:151-160.
    [18] MASOUMI S,ARAB B,VALIPOUR H.A study of thermo-mechanical properties of the cross-linked epoxy:An atomistic simulation[J].Polymer,2015,70:351-360.
    [19] ZHANG W Q,SUI G,YANG X P,et al.Molecular simulation and experimental analysis on thermal and mechanical properties of carbon nanotube/epoxy resin composites with different curing agents at high-low temperature[J].Polymer Composites,2018,39:E945-E954.
    [20] WU C F.Competitive absorption of epoxy monomers on carbon nanotube:A molecular simulation study[J].Polymer Physics,2011,49(15):1123-1130.
    [21] CHEN X M,ZHANG L Y,KE C H.Quantitative nanomechanical terfaces[J].Carbon,2015,82:214-228.
    [22] GOU J H,MINAIE B,WANG B,et al.Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites[J].Computational Materials Science,2004,31:225-236.
    [23] ZHENG Q B,XIA D,XUE Q Z,et al.Computational analysis of effect of modification on the interfacial characteristics of a carbon nanotube-polyethylene composite system[J].Applied Surface Science,2009,255:3534-3543.
    [24] SINDU B S,SASMAL S.Evaluation of mechanical characteristics of nano modified epoxy based polymers using molecular dynamics[J].Computational Materials Science,2015,96:146-158.
    [25] ZHANG W Q,YANG Q,SUI G,et al.Mechanism of modulus improvement for epoxy resin matrices:A molecular dynamics simulation[J].Reactive and Functional Polymers,2017,111:60-67.
    [26] LIU H,LI M,LU Z Y,et al.Multiscale simulation study on the curing reaction and the network structure in a typical epoxy system[J]. Macromolecules, 2011, 44(21):8650-8660.
    [27] JOHNSTON J P,KOO B,CHATTOPADHYAY A,et al.Modeling the molecular structure of the carbon fiber/polymer interphase for multiscale analysis of composites[J].Composites Part B:Engineering,2017,111:27-36.
    [28] SUBRAMANIAN N,RAI A,CHATTOPADHYAY A.Atomistically derived cohesive behavior of interphases in carbon fiber reinforced CNT nanocomposites[J].Carbon,2017,117:55-64.
    [29] VARSHNEY V,ROY A K,BAUR J W.Modeling the role of bulk and surface characteristics of carbon fiber on thermal conductance across the carbon-fiber/matrix interface[J].ACS Applied Materials&Interfaces,2015,7(48):26674-26683.
    [30] ZHANG L,LIU L.Polymeric self-assembled monolayers anomalously improve thermal transport across graphene/polymer interfaces[J].ACS Applied Materials&Interfaces,2017,9:28949-28958.
    [31] KUANG Y,HUANG B.Effects of covalent functionalization on the thermal transport in carbon nanotube/polymer composites:A multi-scale investigation[J].Polymer,2015,56:563-571.
    [32] KAMERLIN N,ELVINGSON C.Deformation behavior and failure of bimodal networks[J].Macromolecules,2017,50:7628-7635.
    [33] SHEN J X,LI X,ZHANG L Q,et al.Mechanical and viscoelastic properties of polymer-grafted nanorod composites from molecular dynamics simulation[J].Macromolecules,2018,51(7):2641-2652.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700