基于T-S型模糊神经网络的空间结构GMM作动器主动控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Active control of spatial structure based on GMM actuator and T-S type fuzzy neural network
  • 作者:杨涛 ; 王社良 ; 代建波
  • 英文作者:YANG Tao;WANG She-liang;DAI Jian-bo;College of Civil Eng,Xi'an Univ of Architecture and Technology;College of Mechanical Eng,Xi'an Shiyou Univ;
  • 关键词:GMM作动器 ; 模糊神经网络 ; 主动控制 ; 仿真 ; 空间结构
  • 英文关键词:GMM active control actuator;;fuzzy neural network;;active control;;simulation;;spatial structure
  • 中文刊名:ZDCJ
  • 英文刊名:Journal of Vibration and Shock
  • 机构:西安建筑科技大学土木工程学院;西安石油大学机械工程学院;
  • 出版日期:2015-12-28
  • 出版单位:振动与冲击
  • 年:2015
  • 期:v.34;No.260
  • 基金:国家自然科学基金(51178388,51108035);; 国家重点实验室开放项目(08KF02);; 陕西省工业攻关项目(2013K07-07,2014K06-34);; 西安建筑科技大学创新团队资助项目
  • 语种:中文;
  • 页:ZDCJ201524001
  • 页数:7
  • CN:24
  • ISSN:31-1316/TU
  • 分类号:6-11+16
摘要
基于自主研发的超磁致伸缩材料(Giant Magnetostrictive Material,GMM)作动器的主动控制特性,应用T-S(Takagi-Sugeno)型模糊神经网络设计了主动控制系统,该系统以GMM作动器两端节点的相对速度和相对位移作为输入,计算输出控制电流。通过神经网络的自适应学习功能进行模糊划分及生成模糊规则,利用模糊系统的推理能力对空间结构模型进行基于地震响应的主动控制仿真,同时与标准型模糊神经网络系统进行仿真对比。结果表明,二者对空间结构模型的主动控制都能达到良好效果,基于T-S型模糊神经网络推理简单,其仿真速度远快于标准型。因此,采用T-S型模糊神经网络对空间结构进行主动控制更能满足工程应用需求。
        Based on independently developed Giant Magnetostrictive Material( GMM) active control actuator,a Takagi-Sugeno( T-S) fuzzy neural network control system of a spatial structure was designed,in which the relative displacement and relative speed of two nodes at the end of the active-member were taken as inputs,and the output control current was calculated by the network. Taking advantage of the adaptive neural network learning function to achieve the fuzzy division and to generate fuzzy rules,an active control simulation of the spatial structure model under the action of seismic response by using the fuzzy reasoning capability,was carried out and the results were compared with the results produced by the simulation of a corresponding standard fuzzy neural network model. The results demonstrate that both the models can achieve good control effects,but the simulation speed of the T-S fuzzy neural network is far faster than the standard model. Therefore,the T-S fuzzy neural network controller can better meet the needs of engineering application requirements.
引文
[1]Houssein N,El-Hassania K K,Heng Hu,et al.Active vibration damping of composite structures using a nonlinear fuzzy controller[J].Composite Structures,2012,94:1385
    [2]Fujtani H,Midorikawa Y.Seismic response control tests and simulations by fuzzy optimal logic of building structures[J].Engineering Structure,1998,20(3):164-175.
    [3]Pourzeynali S,Lavasani A A,Modarayi A H.Active control of high rise building structures using fuzzy logic and genetic algorithms[J].Engineering Structures,2007,26:346-357.
    [4]Ghaboussi J,Joghataie A.Active control of structures using neural networks[J].ASCE Journal of Engineering Mechanics Division,1995,151(4):555-567.
    [5]欧进萍,王刚,田石柱.海洋平台结构振动的AMD主动控制试验研究[J].高技术通讯,2002,12(10):85-90.OU Jin-ping,WANG Gang,TIAN Shi-zhu.Experimental research on AMD control of structural vibration of offshore platform[J].High Technology Letters,2002,12(10):85-90.
    [6]李宏男,李宏宇,董松员,等.基于模糊神经网络系统的结构主动控制[J].沈阳建筑大学学报:自然科学版,2005,21(2):99-102.LI Hong-nan,LI Hong-yu,DONG Song-yuan,et al.Active control of structures using fuzzy neural netwo RK[J].Journal of Shenyang Arch.and Civ.ENG.Univ.,2005,21(2):99-102.
    [7]侯淑萍,杨庆新,陈海燕,等.超磁致伸缩材料的特性及其应用[J].兵器材料科学与工程,2008,31(5):95-98.HOU Shu-ping,YANG Qing-xin,CHEN Hai-yan,et al.Characteristic and application of giant magnetostrictive material[J].Ordnance Material Science and Engineering,2008,31(5):95-98.
    [8]Braghin F,Cinquemani S,Resta F.A model of magnetostrictive actuators for active vibration control[J].Sensors and Actuators a:Physical,2011,165:342-350.
    [9]Ohmata K,Zakike M,Koh T.Hree-link arm type vibration control device using magnetostrictive actuators[J].Journal of Alloys and Compounds,1997,258(1):74-78.
    [10]李琳,陈亮良,杨勇.超磁致伸缩作动器的结构分析[J].北京航空航天大学学报,2013,39(9):74-78.LI Lin,CHEN Liang-liang,YANG Yong.Structural analysis of giant magnetostrictive actuator[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(9):74-78.
    [11]徐峰,张虎,蒋成保,等.超磁致伸缩材料作动器的研制及特性分析[J].航空学报,2002,23(6):552-555.XU Feng,ZHANG Hu,JIANG Cheng-bao,et al.Designing and performance research of giant magnetostrctive actuator[J].Acta Aeronatutica ET Astronautica Sinica,2002,23(6):552-555.
    [12]顾仲权,朱金才,彭福军,等.磁致仲缩材料作动器在振动主动控制中的应用研究[J].振动工程学报,1998,11(4):381-388.GU Zhong-quan,ZHU Jin-cai,PENG Fu-jun,et al.Study on the application of magnetostrictive actuator for active vibration control[J].Journal of Vibration Engineering,1998,11(4):381-388.
    [13]史霄.多自由隔振平台微振动混合控制研究[D].深圳:哈尔滨工业大学,2010.
    [14]杨兴,贾振元,郭东明.超磁致伸缩材料的伸缩特性及其磁感应强度控制原理及方法的实现[J].电工技术学报,2001,16(5):55-58.YANG Xing,JIA Zhen-yuan,GUO Dong-ming.The elastic characteristic of the giant magnetostrictive materials and the realization of its control principle based on magnetic induction[J].Transactions of China Electortechnical Society,2001,16(5):55-58.
    [15]Gros L,Reyne G,Body C.Strong coupling magneto mechanical applied to model heavy magnetosirictive actuators[J].IEEE Transactions on Magnetics,1998,34(5):3150-3153.
    [16]欧进萍.结构振动控制-主动、半主动和智能控制[M].北京:科学出版社,2003:39-40.
    [17]姜长生,王从庆,魏海坤,等.智能控制与应用[M].北京:科学出版社,2007:304-308.
    [18]李国勇.智能控制及其MATLAB实现[M].北京:电子工业出版社,2005:273-279.
    [19]Chen K T,Chou C H,Chang S H,et al.Adaptive fuzzy neural network control on the acoustic field in a duct[J].Applied Acoustics,2008,69(6):558-565.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700