How tightly is the nuclear symmetry energy constrained by a unitary Fermi gas?
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:How tightly is the nuclear symmetry energy constrained by a unitary Fermi gas?
  • 作者:Nai-Bo ; Zhang ; Bao-Jun ; Cai ; Bao-An ; Li ; William ; G.Newton ; Jun ; Xu
  • 英文作者:Nai-Bo Zhang;Bao-Jun Cai;Bao-An Li;William G.Newton;Jun Xu;Department of Physics and Astronomy, Texas A&M University-Commerce;Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University;Department of Physics, Shanghai University;Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University;Shanghai Institute of Applied Physics, Chinese Academy of Sciences;
  • 英文关键词:Symmetry energy;;Unitary gas;;Equation of state;;Nuclear matter
  • 中文刊名:HKXJ
  • 英文刊名:核技术(英文版)
  • 机构:Department of Physics and Astronomy, Texas A&M University-Commerce;Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University;Department of Physics, Shanghai University;Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University;Shanghai Institute of Applied Physics, Chinese Academy of Sciences;
  • 出版日期:2017-12-15
  • 出版单位:Nuclear Science and Techniques
  • 年:2017
  • 期:v.28
  • 基金:supported in part by the China Scholarship Council;; the U.S.Department of Energy,Office of Science,under Award Number DE-SC0013702;; the CUSTIPEN(China-U.S.Theory Institute for Physics with Exotic Nuclei) under the US Department of Energy Grant No.DE-SC0009971;; the National Natural Science Foundation of China under Grant No.11320101004;; the Texas Advanced Computing Center;; supported in part by the Major State Basic Research Development Program(973Program) of China under Contract Nos.2015CB856904 and 2014CB845401;; the National Natural Science Foundation of China under Grant Nos.11475243 and 11421505;; the ‘‘100-talent plan’’ of Shanghai Institute of Applied Physics under Grant Nos.Y290061011and Y526011011 from the Chinese Academy of Sciences;; the Shanghai Key Laboratory of Particle Physics and Cosmology under Grant No.15DZ2272100;; the Shanghai Pujiang Program under Grant No.13PJ1410600
  • 语种:英文;
  • 页:HKXJ201712005
  • 页数:7
  • CN:12
  • ISSN:31-1559/TL
  • 分类号:21-27
摘要
We examine critically how tightly the density dependence of nuclear symmetry energy E_(sym)(q) is constrained by the universal equation of state of the unitary Fermi gas EUG(q) considering currently known uncertainties of higher order parameters describing the density dependence of the equation of state of isospin asymmetric nuclear matter. We found that E_(UG)(q) does provide a useful lower boundary for the E_(sym)(q). However, it doesnot tightly constrain the correlation between the magnitude E_(sym)(q_0) and slope L unless the curvature K_(sym)of the symmetry energy at saturation density q_0 is more precisely known. The large uncertainty in the skewness parameters affects the E_(sym)(q_0) versus L correlation by the same almost as significantly as the uncertainty in K_(sym).
        We examine critically how tightly the density dependence of nuclear symmetry energy E_(sym)(q) is constrained by the universal equation of state of the unitary Fermi gas EUG(q) considering currently known uncertainties of higher order parameters describing the density dependence of the equation of state of isospin asymmetric nuclear matter. We found that E_(UG)(q) does provide a useful lower boundary for the E_(sym)(q). However, it doesnot tightly constrain the correlation between the magnitude E_(sym)(q_0) and slope L unless the curvature K_(sym)of the symmetry energy at saturation density q_0 is more precisely known. The large uncertainty in the skewness parameters affects the E_(sym)(q_0) versus L correlation by the same almost as significantly as the uncertainty in K_(sym).
引文
1.B.A.Li,A.Ramos,G.Verde,I.Vidana(eds.),Topical issue on nuclear symmetry energy.Eur.Phys.J.A 50(2),9(2014)
    2.B.A.Li,C.M.Ko,W.Bauer,Isospin physics in heavy-ion collisions at intermediate energies.Int.J.Mod.Phys.E 7,147(1998).https://doi.org/10.1142/S0218301398000087
    3.B.A.Li,W.Udo Schro¨der(eds.),Isospin Physics in Heavy-Ion Collisions at Intermediate Energies(Nova Science Publishers Inc,New York,2001)
    4.V.Baran,M.Colonna,V.Greco et al.,Reaction dynamics with exotic nuclei.Phys.Rep.410,335-466(2005).https://doi.org/10.1016/j.physrep.2004.12.004
    5.B.A.Li,L.W.Chen,C.M.Ko,Recent progress and new challenges in isospin physics with heavy-ion reactions.Phys.Rep.464,113-281(2008).https://doi.org/10.1016/j.physrep.2008.04.005
    6.W.G.Lynch,M.B.Tsang,Y.Zhang et al.,Probing the symmetry energy with heavy ions.Prog.Nucl.Part.Phys.62,427-432(2009).https://doi.org/10.1016/j.ppnp.2009.01.001
    7.P.Danielewicz,J.Lee,Symmetry energy I:semi-infinite matter.Nucl.Phys.A 818,36-96(2009).https://doi.org/10.1016/j.nucl physa.2008.11.007
    8.W.Trautmann,H.H.Wolter,Elliptic flow and the symmetry energy at supra-saturation density.Int.J.Mod.Phys.E 21,1230003(2012).https://doi.org/10.1142/S0218301312300032
    9.M.B.Tsang,J.R.Stone,F.Camera et al.,Constraints on the symmetry energy and neutron skins from experiments and theory.Phys.Rev.C 86,015803(2012).https://doi.org/10.1103/Phys Rev C.86.015803
    10.C.J.Horowitz,E.F.Brown,Y.Kim et al.,A way forward in the study of the symmetry energy:experiment,theory,and observation.J.Phys.G 41,093001(2014).https://doi.org/10.1088/0954-3899/41/9/093001
    11.M.Baldo,G.F.Burgio,The nuclear symmetry energy.Prog.Part.Nucl.Phys.91,203-258(2016).https://doi.org/10.1016/j.ppnp.2016.06.006
    12.B.A.Li,Nuclear symmetry energy extracted from laboratory experiments.Nuclear Physics News(2017)(to appear).ar Xiv:1701.03564
    13.A.W.Steiner,M.Prakash,J.M.Lattimer et al.,Isospin asymmetry in nuclei and neutron stars.Phys.Rep.411,325-375(2005).https://doi.org/10.1016/j.physrep.2005.02.004
    14.J.M.Lattimer,The nuclear equation of state and neutron star masses.Annu.Rev.Nucl.Part.Sci.62,485-515(2012).https://doi.org/10.1146/annurev-nucl-102711-095018
    15.W.G.Newton,J.Hooker,M.Gearheart et al.,Constraints on the symmetry energy from observational probes of the neutron star crust.Eur.Phys.J.A 50,41(2014).https://doi.org/10.1140/epja/i2014-14041-x
    16.K.Iida,K.Oyamatsu,Symmetry energy,unstable nuclei and neutron star crusts.Eur.Phys.J.A 50,42(2014).https://doi.org/10.1140/epja/i2014-14042-9
    17.J.M.Pearson,N.Chamel,A.F.Fantina,Symmetry energy:nuclear masses and neutron stars.Eur.Phys.J.A 50,43(2014).https://doi.org/10.1140/epja/i2014-14043-8
    18.F.J.Fattoyev,W.G.Newton,B.A.Li,Probing the high-density behavior of symmetry energy with gravitational waves.Eur.Phys.J.A 50,45(2014).https://doi.org/10.1140/epja/i2014-14045-6
    19.T.Fischer,M.Hempel,I.Sagert et al.,Symmetry energy impact in simulations of core-collapse supernovae.Eur.Phys.J.A 50,46(2014).https://doi.org/10.1140/epja/i2014-14046-5
    20.D.Blaschke,D.E.Alvarez-Castillo,T.Klahn,Universal symmetry energy contribution to the neutron star equation of state.ar Xiv:1604.08575
    21.B.A.Li,X.Han,Constraining the neutron-proton effective mass splitting using empirical constraints on the density dependence of nuclear symmetry energy around normal density.Phys.Lett.B727,276-281(2013).https://doi.org/10.1016/j.physletb.2013.10.006
    22.M.Oertel,M.Hempel,T.Kla¨hn et al.,Equations of state for supernovae and compact stars.Rev.Mod.Phys.89,015007(2017).https://doi.org/10.1103/Rev Mod Phys.89.015007
    23.M.W.Zwierlein,Ch.18 in Novel Superfluids vol.2,ed.by K.-H.Bennemann,J.B.Ketterson(Oxford University Press,Oxford,2015)
    24.M.J.H.Ku,A.T.Sommer,L.W.Cheuk et al.,Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas.Science 335,563-567(2012).https://doi.org/10.1126/science.1214987
    25.G.Zu¨rn,T.Lompe,A.N.Wenz et al.,Precise characterization of6Li feshbach resonances using trap-sideband-resolved RF spectroscopy of weakly bound molecules.Phys.Rev.Lett.110,135301(2013).https://doi.org/10.1103/Phys Rev Lett.110.135301
    26.M.G.Endres,D.B.Kaplan,J.W.Lee et al.,Lattice Monte Carlo calculations for unitary fermions in a finite box.Phys.Rev.A 87,023615(2013).https://doi.org/10.1103/Phys Rev A.87.023615
    27.E.E.Kolomeitsev,J.M.Lattimer,A.Ohnishi,I.Tews.ar Xiv:1611.07133v1(2016)
    28.I.Tews,J.M.Lattimer,A.Ohnishi,E.E.Kolomeitsev,Astrophys.J.848,105(2017)
    29.B.J.Cai,L.W.Chen,Constraints on the skewness coefficient of symmetric nuclear matter within the nonlinear relativistic mean field model.Nucl.Sci.Tech.28(to be published)
    30.L.W.Chen,B.J.Cai,C.M.Ko et al.,Higher-order effects on the incompressibility of isospin asymmetric nuclear matter.Phys.Rev.C 80,014322(2009).https://doi.org/10.1103/Phys Rev C.80.014322
    31.M.Dutra,O.Lourenco,J.S.Sa Martins,Skyrme interaction and nuclear matter constraints.Phys.Rev.C 85,035201(2012).https://doi.org/10.1103/Phys Rev C.85.035201
    32.M.Dutra,O.Lourenco,S.S.Avancini et al.,Relativistic meanfield hadronic models under nuclear matter constraints.Phys.Rev.C 90,055203(2014).https://doi.org/10.1103/Phys Rev C.90.055203
    33.F.Fattoyev,W.G.Newton,J.Xu et al.,Generic constraints on the relativistic mean-field and Skyrme-Hartree-Fock models from the pure neutron matter equation of state.Phys.Rev.C 86,025804(2012).https://doi.org/10.1103/Phys Rev C.86.025804
    34.G.Colo`,U.Garg,H.Sagawa,Symmetry energy from the nuclear collective motion:constraints from dipole,quadrupole,monopole and spin-dipole resonances.Eur.Phys.J.A 50,26(2014).https://doi.org/10.1140/epja/i2014-14026-9
    35.U.Garg,Y.Lui,Private communications
    36.M.D.Cozma,Feasability of constraining the curvature parameter of the symmetry energy using elliptic flow data.Eur.Phys.J.A(2017).ar Xiv:1706.01300
    37.B.J.Cai,B.A.Li,Isospin quartic term in the kinetic energy of neutron-rich nucleonic matter.Phys.Rev.C 92,011601(2015).https://doi.org/10.1103/Phys Rev C.92.011601
    38.B.A.Brown,A.Schwenk,Constraints on Skyrme equations of state from properties of doubly magic nuclei and ab initio calculations of low-density neutron matter.Phys.Rev.C 89,011307(2014).https://doi.org/10.1103/Phys Rev C.89.011307.[Erratum:Phys.Rev.C 91,049902(2015)doi:10.1103/Phys Rev C.91.049902]
    39.J.R.Stone,N.J.Stone,S.A.Moszkowski,Incompressibility in finite nuclei and nuclear matter.Phys.Rev.C 89,044316(2014).https://doi.org/10.1103/Phys Rev C.89.044316
    40.S.Shlomo,V.M.Kolomietz,G.Colo,Deducing the nuclearmatter incompressibility coefficient from data on isoscalar compression modes.Eur.Phys.J.A 30,23-30(2006).https://doi.org/10.1140/epja/i2006-10100-3
    41.J.Piekarewicz,Do we understand the incompressibility of neutron-rich matter?J.Phys.G 37,064038(2010).https://doi.org/10.1088/0954-3899/37/6/064038
    42.E.Khan,J.Margueron,I.Vidana,Constraining the nuclear equation of state at subsaturation densities.Phys.Rev.Lett.109,092501(2012).https://doi.org/10.1103/Phys Rev Lett.109.092501
    43.M.Meixner,J.P.Olson,G.Mathews,et al.,The NDL equation of state for supernova simulations.ar Xiv:1303.0064(2013)
    44.L.W.Chen,Higher order bulk characteristic parameters of asymmetric nuclear matter.Sci.China Phys.Mech.Astron.54,s124-s129(2011).https://doi.org/10.1007/s11433-011-4415-9
    45.M.Farine,J.M.Pearson,F.Tondeur,Nuclear-matter incompressibility from fits of generalized Skyrme force to breathingmode energies.Nucl.Phys.A 615,135-161(1997).https://doi.org/10.1016/S0375-9474(96)00453-8
    46.T.Kla¨hn,D.Blaschke,S.Typel et al.,Constraints on the highdensity nuclear equation of state from the phenomenology of compact stars and heavy-ion collisions.Phys.Rev.C 74,035802(2006).https://doi.org/10.1103/Phys Rev C.74.035802
    47.K.A.Maslov,E.E.Kolomeitsev,D.N.Voskresensky,Relativistic mean-field models with scaled hadron masses and couplings:hyperons and maximum neutron star mass.Nucl.Phys.A 950,64-109(2016).https://doi.org/10.1016/j.nuclphysa.2016.03.011
    48.B.J.Cai,L.W.Chen,Constraints on the skewness coefficient of symmetric nuclear matter within the nonlinear relativistic mean field model.ar Xiv:1402.4242v1(2014)
    49.N.B.Zhang et al.,in preparation(2017)
    50.T.Li,U.Garg,Y.Liu et al.,Isotopic dependence of the giant monopole resonance in the Even-A112à124Sn isotopes and the asymmetry term in nuclear incompressibility.Phys.Rev.Lett.99,162503(2007).https://doi.org/10.1103/Phys Rev Lett.99.162503
    51.J.Piekarewicz,Why is the equation of state for tin so soft?Phys.Rev.C 76,031301(2007).https://doi.org/10.1103/Phys Rev C.76.031301
    We would like to thank Umesh Garg for helpful communications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700