Progress of power field effect transistor based on ultra-wide bandgap Ga_2O_3 semiconductor material
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress of power field effect transistor based on ultra-wide bandgap Ga_2O_3 semiconductor material
  • 作者:Hang ; Dong ; Huiwen ; Xue ; Qiming ; He ; Yuan ; Qin ; Guangzhong ; Jian ; Shibing ; Long ; Ming ; Liu
  • 英文作者:Hang Dong;Huiwen Xue;Qiming He;Yuan Qin;Guangzhong Jian;Shibing Long;Ming Liu;Key Laboratory of Microelectronic Devices & Integration Technology, Institute of Microelectronics of Chinese Academy of Sciences;University of Chinese Academy of Sciences;School of Microelectronics, University of Science and Technology of China;
  • 英文关键词:gallium oxide(Ga_2O_3);;ultra-wide bandgap semiconductor;;power device;;field effect transistor(FET)
  • 中文刊名:BDTX
  • 英文刊名:半导体学报(英文版)
  • 机构:Key Laboratory of Microelectronic Devices & Integration Technology, Institute of Microelectronics of Chinese Academy of Sciences;University of Chinese Academy of Sciences;School of Microelectronics, University of Science and Technology of China;
  • 出版日期:2019-01-15
  • 出版单位:Journal of Semiconductors
  • 年:2019
  • 期:v.40
  • 基金:supported by the National Natural Science Foundation of China(Nos.61521064,61522408,61574169,6 1334007,61474136,61574166);; the Ministry of Science andTechnology of China(Nos.2016YFA0201803,2016YFA0203800,2017YFB0405603);; the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(Nos.QYZDB-SSWJSC048,QYZDY-SSW-JSC001);; the Beijing Municipal Science and Technology Project(No.Z171100002017011);; the Opening Project of the Key Laboratory of Microelectronic Devices&Integration Technology,Institute of Microelectronics of Chinese Academy of Sciences
  • 语种:英文;
  • 页:BDTX201901008
  • 页数:9
  • CN:01
  • ISSN:11-5781/TN
  • 分类号:23-31
摘要
As a promising ultra-wide bandgap semiconductor, gallium oxide(Ga_2O_3) has attracted increasing attention in recent years. The high theoretical breakdown electrical field(8 MV/cm), ultra-wide bandgap(~ 4.8 eV) and large Baliga's figure of merit(BFOM) of Ga_2O_3 make it a potential candidate material for next generation high-power electronics, including diode and field effect transistor(FET). In this paper, we introduce the basic physical properties of Ga_2O_3 single crystal, and review the recent research process of Ga_2O_3 based field effect transistors. Furthermore, various structures of FETs have been summarized and compared, and the potential of Ga_2O_3 is preliminary revealed. Finally, the prospect of the Ga_2O_3 based FET for power electronics application is analyzed.
        As a promising ultra-wide bandgap semiconductor, gallium oxide(Ga_2O_3) has attracted increasing attention in recent years. The high theoretical breakdown electrical field(8 MV/cm), ultra-wide bandgap(~ 4.8 eV) and large Baliga's figure of merit(BFOM) of Ga_2O_3 make it a potential candidate material for next generation high-power electronics, including diode and field effect transistor(FET). In this paper, we introduce the basic physical properties of Ga_2O_3 single crystal, and review the recent research process of Ga_2O_3 based field effect transistors. Furthermore, various structures of FETs have been summarized and compared, and the potential of Ga_2O_3 is preliminary revealed. Finally, the prospect of the Ga_2O_3 based FET for power electronics application is analyzed.
引文
[1]Millan J, Godignon P, Perpina X, et al. A survey of wide bandgap power semiconductor devices. IEEE Trans Power Electron, 2014,29(5), 2155
    [2]Baliga B J. Fundamentals of power semiconductor devices. New York:Springer Science&Business Media, 2010
    [3]Chow T P, Omura I, Higashiwaki M, et al. Smart power devices and ICs using GaAs and wide and extreme bandgap semiconductors. IEEE Trans Electron Devices, 2017, 64(3), 856
    [4]Fujita S. Wide-bandgap semiconductor materials:For their full bloom. Jpn J Appl Phys, 2015, 54(3), 030101
    [5]Higashiwaki M, Sasaki K, Kuramata A, et al. Development of gallium oxide power device. Phys Status Solidi A, 2014, 211(1), 21
    [6]Higashiwaki M, Sasaki K, Murakami H, et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol, 2016, 31(3), 034001
    [7]Ueda N, Hosono H, Waseda R, et al. Synthesis and control of conductivity of ultraviolet transmittingβ-Ga2O3 single crystals. Appl Phys Lett, 1997, 70(26), 3561
    [8]Víllora E G, Shimamura K, Yoshikawa Y, et al. Large-sizeβ-Ga2O3single crystals and wafers. J Cryst Growth, 2004, 270(3/4), 420
    [9]Aida K N H, Takeda H, Aota N, et al. Growth ofβ-Ga2O3 single crystals by the edge-defined, film fed growth method. Jpn J Appl Phys, 2008, 47(11), 8506
    [10]Higashiwaki M, Konishi K, Sasaki K, et al. Temperature-dependent capacitance–voltage and current–voltage characteristics of Pt/Ga2O3(001)Schottky barrier diodes fabricated on n-Ga2O3drift layers grown by halide vapor phase epitaxy. Appl Phys Lett,2016, 108(13), 133503
    [11]Higashiwaki M, Sasaki K, Kamimura T, et al. Depletion-mode Ga2O3 metal–oxide–semiconductor field-effect transistors onβ-Ga2O3(010)substrates and temperature dependence of their device characteristics. Appl Phys Lett, 2013, 103(12), 123511
    [12]Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide(Ga2O3)metal–semiconductor field-effect transistors on single-crystalβ-Ga2O3(010)substrates. Appl Phys Lett, 2012, 100(1), 013504
    [13]Hwang W S, Verma A, Peelaers H, et al. High-voltage field effect transistors with wide-bandgapβ-Ga2O3 nanomembranes. Appl Phys Lett, 2014, 104(20), 203111
    [14]Hu Z, Nomoto K, Li W, et al. Enhancement-mode Ga2O3 vertical Transistors with breakdown voltage> 1 kV. IEEE Electron Device Lett, 2018, 39(6), 869
    [15]Chabak K D, McCandless J P, Moser N A, et al. Recessed-gate enhancement-modeβ-Ga2O3 MOSFETs. IEEE Electron Device Lett,2018, 39(1), 67
    [16]Wong M H, Sasaki K, Kuramata A, et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett, 2016, 37(2), 212-215
    [17]Zhou H, Si M, Alghamdi S, et al. High performance depletion/enhancement-modeβ-Ga2O3 on insulator(GOOI)field-effect transistors with record drain currents of 600/450 mA/mm. IEEE Electron Device Lett, 2017, 38(1), 103
    [18]He Q, Mu W, Fu B, et al. Schottky barrier rectifier based on(100)β-Ga2O3 and its DC and AC characteristics. IEEE Electron Device Lett, 2018, 39(4), 556
    [19]Sasaki K, Wakimoto D, Thieu Q T, et al. First demonstration of Ga2O3 trench MOS-type Schottky barrier diodes. IEEE Electron Device Lett, 2017, 38(6), 783
    [20]Konishi K, Goto K, Murakami H, et al. 1-kV vertical Ga2O3 fieldplated Schottky barrier diodes. Appl Phys Lett, 2017, 110(10),103506
    [21]Roy R, Hill V G, Osborn E F. Polymorphism of Ga2O3 and the system Ga2O3–H2O. J Am Chem Soc, 1952, 74, 719
    [22]Tippins H H. Optical absorption and photoconductivity in the band edge ofβ-Ga2O3. Phys Rev, 1965, 140(1A), A316
    [23]Lovejoy T C, Yitamben E N, Shamir N, et al. Surface morphology and electronic structure of bulk single crystalβ-Ga2O3(100). Appl Phys Lett, 2009, 94(8), 081906
    [24]Mohamed M, Janowitz C, Unger I, et al. The electronic structure ofβ-Ga2O3. Appl Phys Lett, 2010, 97(21), 211903
    [25]Janowitz C, Scherer V, Mohamed M, et al. Experimental electronic structure of In2O3 and Ga2O3. New J Phys, 2011, 13(8), 085014
    [26]Ueda O, Ikenag N, Koshi K, et al. Structural evaluation of defects inβ-Ga2O3 single crystals grown by edge-defined film-fed growth process. Jpn J Appl Phys, 2016, 55(12), 1202B
    [27]Mezzadri F, Calestani G, Boschi F, et al. Crystal structure and ferroelectric properties of epsilon-Ga2O3 films grown on(0001)-sapphire. Inorg Chem, 2016, 55(22), 2079
    [28]Xia X, Chen Y, Feng Q, et al. Hexagonal phase-pure wide band gapε-Ga2O3 films grown on 6H-SiC substrates by metal organic chemical vapor deposition. Appl Phys Lett, 2016, 108(20),202103
    [29]Slomski M, Blumenschein N, Paskov P P, et al. Anisotropic thermal conductivity ofβ-Ga2O3 at elevated temperatures:Effect of Sn and Fe dopants. J Appl Phys, 2017, 121(23), 235104
    [30]Hoshikawa K, Oh E, Kobayashi T, et al. Growth ofβ-Ga2O3 single crystals using vertical Bridgman method in ambient air. J Cryst Growth, 2016, 447, 36
    [31]Yoshioka S, Hayashi H, Kuwabara A, et al. Structures and energetics of Ga2O3 polymorphs. J Phys-Condens Mat, 2007, 19(34),346211
    [32]?hman J, Svensson G, Albertsson J. A reinvestigation of beta-gallium oxide. Acta Crystallogr C, 1996, 52(6), 1336
    [33]Janotti A, Van de Walle C G. Oxygen vacancies in ZnO. Appl Phys Lett, 2005, 87(12), 122102
    [34]Oshima T, Kaminaga K, Mukai A, et al. Formation of semi-insulating layers on semiconductingβ-Ga2O3 single crystals by thermal oxidation. Jpn J Appl Phys, 2013, 52(5R), 051101
    [35]Varley J B, Weber J R, Janotti A, et al. Oxygen vacancies and donor impurities inβ-Ga2O3. Appl Phys Lett, 2010, 97(14), 142106
    [36]Hajnal Z, MiróJ, Kiss G, et al. Role of oxygen vacancy defect states in then-type conduction ofβ-Ga2O3. J Appl Phys, 1999,86(7), 3792
    [37]Fleischer J G M, Meixner H. H2-induced changes in electrical conductance ofβ-Ga2O3 thin-film systems. Appl Phys A, 1992, 54,560
    [38]Kohl FBCKAFMFC. Decomposition of methane on polycrystalline thick films of Ga2O3 investigated by thermal desorption spectroscopy with a mass spectrometer. Fresenius J Ana Chem,1997, 358, 187
    [39]Schwebel M F T, Meixner H, Kohl C D. CO-sensor for domestic use based on high temperature stable Ga2O3 thin films. Sens Actuators B Chem, 1998, 49, 46
    [40]Ogita K H M, Nakanishi Y, Hatanaka Y. Ga2O3 thin film for oxygen sensor at high temperature. Appl Surf Sci, 2001, 175, 721
    [41]Guo Z, Verma A, Wu X, et al. Anisotropic thermal conductivity in single crystalβ-gallium oxide. Appl Phys Lett, 2015, 106(11),111909
    [42]Handwerg M, Mitdank R, Galazka Z, et al. Temperature-dependent thermal conductivity in Mg-doped and undopedβ-Ga2O3bulk-crystals. Semicond Sci Tech, 2015, 30(2), 024006
    [43]Santia M D, Tandon N, Albrecht J D. Lattice thermal conductivity inβ-Ga2O3 from first principles. Appl Phys Lett, 2015, 107(4),041907
    [44]Wang H. Investigation of power semiconductor devices for high frequency high density power converters. Virgina Tech, 2007
    [45]Jessen G, Chabak K D, Green A, et al. Toward realization of Ga2O3for power electronics applications. The 75th IEEE Device Research Conference(DRC), 2017
    [46]Ma N, Tanen N, Verma A, et al. Intrinsic electron mobility limits inβ-Ga2O3. Appl Phys Lett, 2016, 109(21), 212101
    [47]Oishi T, Koga Y, Harada K, et al. High-mobilityβ-Ga2O3(-201)single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. Appl Phys Express, 2015, 8(3), 031101
    [48]Higashiwaki M, Kuramata A, Murakami H, et al. State-of-the-art technologies of gallium oxide power devices. J Phys D, 2017,50(33), 333002
    [49]Tang C, Sun J, Lin N, et al. Electronic structure and optical property of metal-doped Ga2O3:a first principles study. RSC Adv,2016, 6(82), 78322
    [50]Peelaers H, Van de Walle C G. Brillouin zone and band structure ofβ-Ga2O3. Phys Status Solidi B, 2015, 252(4), 828
    [51]von Wenckstern H. Group-III sesquioxides:growth, physical properties and devices. Adv Electron Mater, 2017, 3(9), 1600350
    [52]Sasaki K, Higashiwaki M, Kuramata A, et al. MBE grown Ga2O3and its power device applications. J Crys Growth, 2013, 378, 591
    [53]Wong M H, Morikawa Y, Sasaki K, et al. Characterization of channel temperature in Ga2O3 metal–oxide–semiconductor field-effect transistors by electrical measurements and thermal modeling. Appl Phys Lett, 2016, 109(19), 193503
    [54]Wong M H, Takeyama A, Makino T, et al. Radiation hardness of Ga2O3 MOSFETs against gamma-ray irradiation. IEEE Device Research Conference(DRC), 2017
    [55]Green A J, Chabak K D, Heller E R, et al. 3.8-MV/cm breakdown strength of MOVPE-grown Sn-dopedβ-Ga2O3 MOSFETs. IEEE Electron Device Lett, 2016, 37(7), 902
    [56]Wong M H, Nakata Y, Kuramata A, et al. Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain. Appl Phys Express, 2017, 10, 041101
    [57]Wong M, Goto K, Kuramata A, et al. First demonstration of vertical Ga2O3 MOSFET planar structure with a current aperture. IEEE Device Research Conference(DRC), 2017
    [58]Song B, Verma A K, Nomoto K, et al. Vertical Fin Ga2O3 power field-effect transistors with on/off ratio>109. IEEE Device Research Conference(DRC), 2017
    [59]Green A J, Chabak K D, Baldini M, et al.β-Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Lett, 2017, 38(6),790
    [60]Krishnamoorthy S, Xia Z, Bajaj S, et al. Delta-dopedβ-gallium oxide field-effect transistor. Appl Phys Express, 2017, 10(5), 051102
    [61]Xia Z, Joishi C, Krishnamoorthy S, et al. Delta dopedβ-Ga2O3 field effect transistors with regrown ohmic contacts. IEEE Electron Device Lett, 2018, 39(4), 568
    [62]Hwang A V W S, Protasenko V, Rouvimov S, et al. Nanomembraneβ-Ga2O3 high-voltage field effect transistors. IEEE Device Research Conference(DRC), 2013
    [63]Ahn S, Ren F, Kim J, et al. Effect of front and back gates onβ-Ga2O3 nano-belt field-effect transistors. Appl Phys Lett, 2016,109(6), 062102
    [64]Bae J, Kim H W, Kang I H, et al. High breakdown voltage quasitwo-dimensionalβ-Ga2O3 field-effect transistors with a boron nitride field plate. Appl Phys Lett, 2018, 112(12), 122102
    [65]Zhou H, Maize K, Qiu G, et al.β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect. Appl Phys Lett, 2017, 111(9), 092102
    [66]Zhou H, Alghamdi S, Si S W, et al. Al2O3/β-Ga2O3(-201)interface improvement through piranha pretreatment and postdeposition annealing. IEEE Electron Device Lett, 2016, 37(11), 1411
    [67]Kamimura T, Krishnamurthy D, Kuramata A, et al. Epitaxially grown crystalline Al2O3 interlayer onβ-Ga2O3(010)and its suppressed interface state density. Jpn J Appl Phys, 2016, 55(12),1202B
    [68]Hattori M, Oshima T, Wakabayashi R, et al. Epitaxial growth and electric properties ofγ-Al2O3(110)films onβ-Ga2O3(010)substrates. Jpn J Appl Phys, 2016, 55(12), 1202B
    [69]Zeng K, Jia Y, Singisetti U. Interface state density in atomic layer deposited SiO2/β-Ga2O3 MOSCAPs. IEEE Electron Device Lett,2016, 37(7), 906
    [70]Zeng K, Singisetti U. Temperature dependent quasi-static capacitance-voltage characterization of SiO2/β-Ga2O3 interface on different crystal orientations. Appl Phys Lett, 2017, 111(12), 122108
    [71]Dong H, Mu W, Hu Y, et al. C–Vand J–Vinvestigation of HfO2/Al2O3 bilayer dielectrics MOSCAPs on(100)β-Ga2O3. AIP Adv, 2018, 8(6), 065215
    [72]Bhuiyan M A, Zhou H, Jiang R, et al. Charge trapping in Al2O3/β-Ga2O3 based MOS capacitors. IEEE Electron Device Lett, 2018,39(7), 1022
    [73]Yao Y, Davis R F, Porter L M. Investigation of different metals as ohmic contacts toβ-Ga2O3:comparison and analysis of electrical behavior, morphology, and other physical properties. J Electron Mater, 2016, 46(4), 2053
    [74]Moser N A, McCandless J P, Crespo A, et al. High pulsed current densityβ-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge. Appl Phys Lett, 2017, 110(14), 143505
    [75]Sasaki K, Thieu Q T, Wakimoto D, et al. Depletion-mode vertical Ga2O3 trench MOSFETs fabricated using Ga2O3 homoepitaxial films grown by halide vapor phase epitaxy. Appl Phys Express,2017, 10(12), 124201
    [76]Zeng K, Wallace J S, Heimburger C, et al. Ga2O3 MOSFETs using spin-on-glass source/drain doping technology. IEEE Electron Device Lett, 2017, 38(4), 513

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700