金刚石NV~-色心系综自旋相干动力学解耦
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Coherence Dynamic Decoupling for Spin of NV~- Color Center Ensemble in Diamond
  • 作者:宁伟光 ; 张扬 ; 李中豪 ; 唐军
  • 英文作者:NING Wei-guang;ZHANG Yang;LI Zhong-hao;TANG Jun;School of Instruments and Electronic,North University of China;
  • 关键词:金刚石NV-色心系综 ; Rabi振荡 ; 动力学解耦
  • 英文关键词:NV~- color center ensemble in diamond;;Rabi oscillations;;dynamic decoupling
  • 中文刊名:LZGX
  • 英文刊名:Journal of Quantum Optics
  • 机构:中北大学仪器与电子学院;
  • 出版日期:2019-05-10 13:17
  • 出版单位:量子光学学报
  • 年:2019
  • 期:v.25;No.95
  • 基金:科技部重点研发专项(2017YFB0503100);; 国家自然科学基金面上项目(61571406);; 中北大学自然科学研究基金(XJJ201808)
  • 语种:中文;
  • 页:LZGX201902014
  • 页数:6
  • CN:02
  • ISSN:14-1187/O4
  • 分类号:105-110
摘要
室温条件下高浓度的NV~-色心系综的相干时间受到较高浓度顺磁杂质和杂质自旋的影响,限制着其高灵敏磁传感的实现。为了增加NV~-色心系综的相干时间,本文对系综的动力学解耦(DD)过程进行研究。在外部磁场为40 G的条件下,通过连续光学磁共振光谱技术(CW-ODMR),首先确定电子自旋态|m_s=0>→|m_s=±1>共振跃迁对应的微波频率;构建脉冲控制序列,观测不同微波功率条件下系综NV~-色心自旋电子态|m_s=0>→|m_s=+1>的相干Rabi振荡,获得最优功率的π脉冲作用时间;基于典型的CPMG-n控制序列,研究最优脉冲作用下不同π脉冲个数的DD过程。在最大输入微波功率为1.30 mW的条件下,获得的π脉冲长度为28.8 ns;结合CPMG-32控制脉冲序列,系综的典型相干时间由372(3) ns提升至8.7(1)μs。该研究结果为后续高灵敏量子磁检测的实现奠定了实验基础。
        The spin coherence time of NV-with high concentration at room temperature is limited by the paramagnetic impurity and its spin, which is not conducive to the magnetic sensing with high sensitivity. To increase the coherence time, the dynamic decoupling(DD) process for NV~- color center ensemble is studied in this paper. When the external magnetic field is fixed at 40 G,the resonant microwave frequency of |m_s=0>→|m_s=±1> is determined via continuous-wave optical magnetic resonance(CW-ODMR) spectroscopy. The Rabi oscillations between the |m_s=0>→|m_s=+1> with different microwave power have been observed and the optimal π-pulse length can be determined. Based on the typical CPMG-n sequence, the DD process with different number of optimal π-pulse is also studied. At a maximum input power of 1.30 mW, the optimal π-pulse length is 28.8 ns. Combined with CPMG-32 sequence, the coherence time is increased from 372(3) ns to 8.7(1) μs. These results show that we already have the basic technology of improving the coherence time with manipulation of quantum state, which is the foundation for the quantum magnetic detection with high sensitivity.
引文
[1] Wolf T,Neumann P,Nakamura K,et al.Subpicotesla Diamond Magnetometry [J].Physical Review X,2015,5:041001.DOI:10.1103/PhysRevX.5.041001.
    [2] Waldherr G,Wang Y,Zaiser S,et al.Quantum Error Correction in a Solid-state Hybrid Spin Register [J].Nature,2014,506:204.DOI:10.1038/nature12919.
    [3] Vander Sar T,Wang Z,Blok S,et al.Decoherence-protected Quantum Gates for a Hybrid Solid-state Spin Register[J].Nature,2014,484:82.DOI:10.1038/nature10900.
    [4] Rondin L,Tetienne J,Hingant T,et al.Magnetometry with Nitrogen-vacancy Defects in Diamond[J].Reports on Progress in Physics,2014,77:056503.DOI:10.1088/0034-4885/77/5/056503.
    [5] Toyli D M,Christle D J,Alkauskas A,et al.Measurement and Control of Single Nitrogen-Vacancy Center Spins above 600 K[J].Physical Review X,2012,2:031001.DOI:10.1103/PhysRevX.2.031001.
    [6] Lee D,Lee K W,Cady J V,et al.Topical Review:Spins and Mechanics in Diamond[J].Journal of Optics,2017,19:033001,DOI:10.1088/2040-8986/aa52cd.
    [7] Ledbetter M P,Jensen K,Fischer R,et al.Gyroscopes Based on Nitrogen-vacancy Centers in Diamond[J].Physical Review A,2012,86:052116.DOI:10.1103/PhysRevA.86.052116.
    [8] Ajoy A,Cappellaro P.Stable Three-axis Nuclear-spin Gyroscope in Diamond[J].Physical Review A,2012,86:062104.DOI:10.1103/PhysRevA.86.062104.
    [9] Schmitt M,Gefen T,Stürner F M,et al.Submillihertz Magnetic Spectroscopy Performed with a Nanoscale Quantum Sensor[J].Science,2017,356:832,DOI:10.1126/science.aam5532.
    [10] Fang K J,Acosta V M,Santori C,et al.High-Sensitivity Magnetometry Based on Quantum Beats in Diamond Nitrogen-Vacancy Centers[J].Physical Review Letter,2013,110:130802.DOI:10.1103/PhysRevLett.110.130802.
    [11] Xu L X,Yuan H,Zhang N,et al.High-efficiency Fluorescence Collection for NV- Center Ensembles in Diamond [J].Optics Express,2019,27:10787.DOI:10.1364/OE.27.010787.
    [12] Pham L M,Bar-Gill N,Belthangady C,et al.Enhanced Solid-state Multispin Metrology using Dynamical Decoupling[J].Physical Review B,2012,86:045241.DOI:10.1103/PhysRevB.86.045214.
    [13] Bar-Gill N,Pham L M,Jarmola A,et al.Solid-state Electronic Spin Coherence Time Approaching One Second [J].Nature Communications,2013,4:1743.DOI:10.1038/ncomms2771
    [14] Lee S K,Lee H W.Damped Population Oscillation in a Spontaneously Decaying Two-level Atom Coupled to a Monochromatic Field[J].Physical Review A,2006,74:063817.DOI:10.1103/PhysRevA.74.063817
    [15] Akhtar M,Sekiguchi T,Itahashi T,et al.Rabi Oscillation and Electron-spin-echo Envelope Modulation of the Photoexcited Triplet Spin System in Silicon[J].Physical Review B,2012,86:115206.DOI:10.1103/PhysRevB.86.115206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700