Z型光催化剂Sb_2WO_6/g-C_3N_4的制备及光催化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and Photocatalytic Activity of Z-Scheme Photocatalyst Sb2WO6/g-C3N4
  • 作者:张晶 ; 董玉明 ; 刘湘 ; 李和兴
  • 英文作者:ZHANG Jing;DONG Yuming;LIU Xiang;LI Hexing;Key Laboratory of Synthetic and Biological Colloids,Ministry of Education,School of Chemical and Material Engineering,Jiangnan University;Key Laboratory of the Chinese Ministry of Education in Resource Chemistry,Shanghai Normal University;
  • 关键词:Sb_2WO_6/g-C_3N_4 ; Z型光催化剂 ; 光催化性能
  • 英文关键词:Sb_2WO_6/g-C_3N_4;;Z-Scheme photocatalyst;;Photocatalytic activity
  • 中文刊名:GDXH
  • 英文刊名:Chemical Journal of Chinese Universities
  • 机构:江南大学化学与材料工程学院合成与生物胶体教育部重点实验室;上海师范大学资源化学教育部重点实验室;
  • 出版日期:2019-01-10
  • 出版单位:高等学校化学学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金(批准号:21676123);; 教育部国家外国专家局高等学校学科创新引智“111”项目(批准号:B13025)资助~~
  • 语种:中文;
  • 页:GDXH201901018
  • 页数:7
  • CN:01
  • ISSN:22-1131/O6
  • 分类号:131-137
摘要
通过水热反应合成了Sb_2WO_6改性的g-C_3N_4复合材料(Sb_2WO_6/g-C_3N_4).通过X射线衍射(XRD)、扫描电子显微镜(SEM)、紫外-可见漫散射反射光谱(UV-Vis DRS)和光致发光光谱(PL)等表征了样品的性质.结果表明,Sb_2WO_6在g-C_3N_4的表面上生长,并且复合材料光吸收能力有一定的增强,光生电子-空穴的重组率降低.通过罗丹明B(Rh B)的光降解评价了Sb_2WO_6/g-C_3N_4复合材料的光催化性能.结果表明,模拟日光下Sb_2WO_6质量分数为10%的Sb_2WO_6/g-C_3N_4复合材料在60 min内对Rh B的降解率为99. 3%,高于纯g-C_3N_4和Sb_2WO_6. Sb_2WO_6/g-C_3N_4复合材料的这种高度增强的光催化活性主要归因于强的界面相互作用促进了光生电子-空穴分离和迁移.添加自由基清除剂的实验结果表明,·O~(2-)和h~+是光催化反应中的主要活性物质. Sb_2WO_6/g-C_3N_4复合材料在几个反应周期内表现出优异的稳定性.根据实验结果提出了一种可能的Z型光催化机理.
        Sb_2WO_6 modified g-C_3N_4( Sb_2WO_6/g-C_3N_4) composites were synthesized by hydrothermal reaction. The properties of the Sb_2WO_6/g-C_3N_4 composites were analyzed by X-ray diffraction( XRD),scanning electron microscopy( SEM),UV-Vis diffuse reflectance spectroscopy( UV-Vis DRS) and photoluminescence( PL) spectroscopy. The results indicated that the Sb_2WO_6 grew on the surface of g-C_3N_4,forming closely contacted interfaces between the Sb_2WO_6 and g-C_3N_4 components. The photocatalytic performance of Sb_2WO_6/g-C_3N_4 composites was evaluated through the photodegradation of Rhodamine B( Rh B). The results showed that 99. 3% of RhB was degraded by Sb_2WO_6/g-C_3N_4 composites with 10%( mass fraction) of Sb_2WO_6 in 60 min under simulated sunlight,which was much higher than that of pure g-C_3N_4 and Sb_2WO_6. This highly enhanced photocatalytic activity of the Sb_2WO_6/g-C_3N_4 composites can be mainly attributed to strong interfacial interaction promoting the photo-generated electron-hole separation and migration. The results of radical scavenger experiments showed that · O~(2-) and h~+were the dominant reactive species in the photocatalytic reaction. Besides,the Sb_2WO_6/g-C_3N_4 composites showed excellent stability over several reaction cycles. Finally,a possible Z-scheme photocatalytic mechanism was proposed based on the experimental results.
引文
[1] Xue J.,Wang R. W.,Zhang Z. T.,Qiu S. L.,Chem. J. Chinese Universities,2018,39(2),319—326(薛佼,王润伟,张宗,裘式纶.高等学校化学学报,2018,39(2),319—326)
    [2] Tan K. B.,Vakili M.,Horri B. A.,Poh P. E.,Abdullah A. Z.,Salamatinia B.,Separation&Purification Technology,2015,150,229—242
    [3] Verma A. K.,Dash R. R.,Bhunia P.,Journal of Environmental Management,2012,93,154—168
    [4] Liang B.,. Guan C,Wang J.,Qu J.,Pan K.,Wang L.,Zhang P.,Wang X.,Carbon,2016,103,94—100
    [5] Wang Y.,Wang Q.,Zhan X.,Wang F.,Safdar M.,He J.,Nanoscale,2013,5,8326—8339
    [6] Chen C.,Ma W.,Zhao J.,Chemical Society Reviews,2010,39,4206—4219
    [7] Hua C. H.,Ma H. C.,Dong X. L.,Zhang X. F.,Chem. J. Chinese Universities,2018,39(1),200—205(华承贺,马红超,董晓丽,张秀芳.高等学校化学学报,2018,39(1),200—205)
    [8] Liu X.,Shi Y.,Dong Y.,Li H.,Xia Y.,Wang H.,New Journal of Chemistry,2017,41,13382—13390
    [9] Solovitch N.,Labille J.,Rose J.,Chaurand P.,Borschneck D.,Wiesner M. R.,Bottero J. Y.,Environmental Science&Technology,2017,44,4897—4902
    [10] Liu Y.,Shi Y.,Liu X.,Li H.,Applied Surface Science,2016,396,58—66
    [11] Ong W. J.,Tan L. L.,Ng Y. H.,Yong S. T.,Chai S. P.,Chemical Reviews,2016,116,7159—7329
    [12] Cao S.,Low J.,Yu J.,Jaroniec M.,Advanced Materials,2015,27,2150—2176
    [13] Mamba G.,Mishra A. K.,Applied Catalysis B:Environmental,2016,198,347—377
    [14] Han Q.,Hu C.,Zhao F.,Zhang Z.,Chen N.,Qu L.,Journal of Materials Chemistry A,2015,3,4612—4619
    [15] Guo W.,Fan K.,Zhang J.,Xu C.,Applied Surface Science,2018,447,125—134
    [16] Xu C. Q.,Li K.,Zhang W. D.,Journal of Colloid&Interface Science,2017,495,27—36
    [17] Wang Y.,Wang X.,Antonietti M.,Angewandte Chemie-international Edition,2012,51,68—89
    [18] Safaei J.,Ullah H.,Mohamed N. A.,Noh M. F. M.,Soh M. F.,Tahir A. A.,Ludin N. A.,Ibrahim M. A.,Wan N. R. W. I.,Teridi M. A. M.,Applied Catalysis B:Environmental,2018,234,296—310
    [19] Hong Y.,Jiang Y.,Li C.,Fan W.,Xu Y.,Yan M.,Shi W.,Applied Catalysis B:Environmental,2016,180,663—673
    [20] Li H.,Tu W.,Zhou Y.,Zou Z.,Advanced Science,2016,3,1500389
    [21] Khan A.,Alam U.,Raza W.,Bahnemann D.,Muneer M.,J. Phys. Chem. Solids,2018,115,59—68
    [22] Wang F.,Li W.,Gu S.,Li H.,Liu X.,Ren C.,Catalysis Communications,2017,96,50—53
    [23] And C. Z.,Zhu Y.,Chemistry of Materials,2010,17,3537—3545
    [24] Yuan L.,Weng B.,Colmenares J. C.,Sun Y. G.,Xu Y. J.,Small,2017,13,1702253
    [25] Sun Z.,Guo J.,Zhu S.,Mao L.,Ma J.,Zhang D.,Nanoscale,2014,6,2186—2193
    [26] Zhao Y.,Liang X.,Wang Y.,Shi H.,Liu E.,Fan J.,Hu X.,Journal of Colloid&Interface Science,2018,523,7—17
    [27] Zhu B.,Xia P.,Li Y.,Ho W.,Yu J.,Applied Surface Science,2017,391,175—183
    [28] Zhang W.,Zhou L.,Shi J.,Deng H.,Journal of Colloid&Interface Science,2017,496,167—176
    [29] Yang C.,Yang X.,Li F.,Li T.,Cao W.,Journal of Industrial&Engineering Chemistry,2016,39,93—100
    [30] Wang J.,Tang L.,Zeng G.,Deng Y.,Liu Y.,Wang L.,Zhou Y.,Guo Z.,Wang J.,Zhang C.,Applied Catalysis B:Environmental,2017,209,285—294
    [31] Li K.,Huang Z.,Zeng X.,Huang B.,Gao S.,Lu J.,ACS Applied Materials&Interfaces,2017,9,11577—11586
    [32] Yao J.,Chen H.,Jiang F.,Jiao Z.,Jin M.,Journal of Colloid&Interface Science,2017,490,154—162
    [33] Zhang L.,Wang G.,Xiong Z.,Tang H.,Jiang C.,Applied Surface Science,2018,436,162—171
    [34] Ye Y.,Yang H.,Wang X.,Feng W.,Materials Science in Semiconductor Processing,2018,82,14—24
    [35] Ma Y.,Bian Y.,Tan P.,Shang Y.,Liu Y.,Wu L.,Zhu A.,Liu W.,Xiong X.,Pan J.,Journal of Colloid&Interface Science,2017,497,144—154
    [36] Ye L.,Liu J.,Gong C.,Tian L.,Peng T.,Zan L.,ACS Catalysis,2012,2,1677—1683

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700