Effect of tannic acid on corrosion behavior of carbon steel in NaCl solution
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of tannic acid on corrosion behavior of carbon steel in NaCl solution
  • 作者:Wenhua ; Xu ; En-Hou ; Han ; Zhenyu ; Wang
  • 英文作者:Wenhua Xu;En-Hou Han;Zhenyu Wang;Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 英文关键词:Tannic acid;;Unrusted carbon steel;;Ferric-tannates;;EIS;;Corrosion
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 出版日期:2019-01-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:supported financially by the Key Technology of Corrosion Control on Wind Power Equipment Academician Workstation Project(No.2013B090400023)
  • 语种:英文;
  • 页:CLKJ201901010
  • 页数:12
  • CN:01
  • ISSN:21-1315/TG
  • 分类号:66-77
摘要
Corrosion behavior of unrusted Q235 carbon steel was investigated in 3.5% NaCl solutions with 1–5 wt%tannic acid addition, using electrochemical methods including electrochemical impedance spectra(EIS),potentiodynamic polarization and scanning vibrating electrode technique(SVET) combined with surface analysis. Results show that the corrosion rate decreases with increasing tannic acid concentration. As compared with tannic acid-free solution, 1% tannic acid does not provide inhibition effect during the whole immersion, while inhibition effect is observed for 3% tannic acid after 8 h and for 5% tannic acid after 4 h. The inhibition efficiency by weight loss measurements(áw) for 1%, 3%, and 5% tannic is around-17.2%, 40.3%, and 51.5%, respectively. Corrosion of unrusted carbon steel in the presence of tannic acid is attributed to the joint effect of tannic acid adsorption and pH decrease. Formation of ferric-tannates is verified by X-ray photoelectron spectroscopy(XPS) and Raman spectra. The reaction mechanism between tannic acid and unrusted carbon steel is proposed.
        Corrosion behavior of unrusted Q235 carbon steel was investigated in 3.5% NaCl solutions with 1–5 wt%tannic acid addition, using electrochemical methods including electrochemical impedance spectra(EIS),potentiodynamic polarization and scanning vibrating electrode technique(SVET) combined with surface analysis. Results show that the corrosion rate decreases with increasing tannic acid concentration. As compared with tannic acid-free solution, 1% tannic acid does not provide inhibition effect during the whole immersion, while inhibition effect is observed for 3% tannic acid after 8 h and for 5% tannic acid after 4 h. The inhibition efficiency by weight loss measurements(áw) for 1%, 3%, and 5% tannic is around-17.2%, 40.3%, and 51.5%, respectively. Corrosion of unrusted carbon steel in the presence of tannic acid is attributed to the joint effect of tannic acid adsorption and pH decrease. Formation of ferric-tannates is verified by X-ray photoelectron spectroscopy(XPS) and Raman spectra. The reaction mechanism between tannic acid and unrusted carbon steel is proposed.
引文
[1]H.Gerengi,H.I.Sahin,Ind.Eng.Chem.Res.51(2012)780-787.
    [2]H.Jafari,I.Danaee,H.Eskandari,M.RashvandAvei,J.Mater.Sci.Technol.30(2014)239-252.
    [3]S.Martinez,I.Stagljar,J.Mol.Struct.Theochem.640(2003)167-174.
    [4]S.Martinez,Mater.Chem.Phys.77(2003)97-102.
    [5]S.Martinez,I.Stern,J.Appl.Electrochem.31(2001)973-978.
    [6]S.Martinez,I.Stern,Appl.Surf.Sci.199(2002)83-89.
    [7]A.A.Rahim,E.Rocca,J.Steinmetz,M.J.Kassim,R.Adnan,M.S.Ibrahim,Corros.Sci.49(2007)402-417.
    [8]M.Magro,E.Bonaluto,D.Baratella,J.D.Roger,P.Jakubec,V.Corraducci,J.Tucek,O.Malina,R.Zboril,F.Vianello,Chemphyschem 17(2016)3196-3203.
    [9]J.Mabrour,M.Akssira,M.Azzi,M.Zertoubi,N.Saib,A.Messaoudi,A.Albizane,S.Tahir,Corros.Sci.46(2004)1833-1847.
    [10]A.A.Rahim,E.Rocca,J.Steinmetz,M.J.Kassim,Corros.Sci.50(2008)1546-1550.
    [11]F.Hoffmann,M.Cornelius,J.Morell,M.Froba,Angew.Chem.118(2006)3290-3328.
    [12]J.Iglesias,E.G.De Saldana,J.A.Jaen,Hyperfine Interact.134(2001)109-114.
    [13]E.Stupnisek-Lisac,A.Gazivoda,M.Madzarac,Electrochim.Acta 47(2002)4189-4194.
    [14]M.A.Quraishi,A.Singh,V.K.Singh,D.K.Yadav,A.K.Singh,Mater.Chem.Phys.122(2010)114-122.
    [15]G.Matamala,W.Smeltzer,G.Droguett,Corros.Sci.42(2000)1351-1362.
    [16]C.A.Barrero,L.M.Ocampo,C.E.Arroyave,Corros.Sci.43(2001)1003-1018.
    [17]A.A.Rahim,J.Kassim,Recent.Patents Mater.Sci.1(2008)223-231.
    [18]B.H.Zhao,W.M.Han,W.H.Zhang,B.Shi,Res.Chem.Intermediates 44(2018)407-423.
    [19]A.Collazo,X.R.Novoa,C.Perez,B.Puga,Electrochim.Acta 55(2010)6156-6162.
    [20]A.A.Rahim,M.J.Kassim,E.Rocca,J.Steinmetz,Corros.Eng.Sci.Technol.46(2011)425-431.
    [21]J.A.Jaen,J.De Obaldia,M.V.Rodriguez,Hyperfine Interact.202(2011)25-38.
    [22]K.W.Tan,M.J.Kassim,Corros.Sci.53(2011)569-574.
    [23]O.R.Pardini,J.I.Amalvy,A.R.Di Sarli,R.Romagnoli,V.F.Vetere,J.Coat.Technol.73(2001)99-106.
    [24]J.A.Jaen,E.Y.Arauz,J.Iglesias,Y.Delgado,Hyperfine Interact.148(2003)199-209.
    [25]I.B.Obot,A.Madhankumar,J.Ind.Eng.Chem.25(2015)105-111.
    [26]J.A.Jaen,L.Gonzalez,A.Vargas,G.Olave,Hyperfine Interact.148(2003)227-235.
    [27]V.A.Pugsley,G.Korn,S.Luyckx,H.G.Sockel,W.Heinrich,M.Wolf,H.Feld,R.Schulte,Int.J.Refract.Met.Hard Mater.19(2001)311-318.
    [28]V.Pugsley,G.Korn,S.Luyckx,H.G.Sockel,Z.Metall.93(2002)745-749.
    [29]H.Winkelmann,E.Badisch,M.Roy,H.Danninger,Mater.Corros.60(2009)40-48.
    [30]H.Winkelmann,E.Badisch,S.Ilo,S.Eglsaer,Mater.Corros.60(2009)192-198.
    [31]A.Collazo,X.R.Novoa,C.Perez,B.Puga,Electrochim.Acta 53(2008)7565-7574.
    [32]S.L.Zelinka,D.S.Stone,Mater.Corros.62(2011)739-744.
    [33]F.T.Cao,J.Wei,J.H.Dong,W.Ke,Corros.Sci.100(2015)365-376.
    [34]I.Ahamad,R.Prasad,M.A.Quraishi,Corros.Sci.52(2010)933-942.
    [35]F.Bentiss,M.Outirite,M.Traisnel,H.Vezin,M.Lagrenee,B.Hammouti,S.S.Al-Deyab,C.Jama,Int.J.Electrochem.Soc.7(2012)1699-1723.
    [36]S.S.Rao,B.V.A.Rao,S.R.Kiran,B.Sreedhar,J.Mater.Sci.Technol.30(2014)77-89.
    [37]F.S.de Souza,A.Spinelli,Corros.Sci.51(2009)642-649.
    [38]A.O.Yuce,B.D.Mert,G.Kardas,B.Yazici,Corros.Sci.83(2014)310-316.
    [39]S.Martinez,M.Metikos-Hukovic,J.Appl.Electrochem.33(2003)1137-1142.
    [40]D.M.Drazic,L.Vracar,V.J.Drazic,Electrochim.Acta 39(1994)1165-1170.
    [41]S.M.Bhola,S.Kundu,R.Bhola,B.Mishra,S.Chatterjee,J.Mater.Sci.Technol.30(2014)163-171.
    [42]Z.H.Tao,S.T.Zhang,W.H.Li,B.R.Hou,Corros.Sci.51(2009)2588-2595.
    [43]X.Jiang,Y.G.Zheng,W.Ke,Corros.Sci.47(2005)2636-2658.
    [44]F.Farelas,A.Ramirez,J.Electrochem.Soc.5(2010)797-814.
    [45]W.J.Lee,Mater.Sci.Eng.A 348(2003)217-226.
    [46]M.A.Amin,S.S.A.El-Rehim,E.E.F.El-Sherbini,R.S.Bayoumi,Electrochim.Acta52(2007)3588-3600.
    [47]A.K.Singh,M.A.Quraishi,J.Appl.Electrochem.40(2010)1293-1306.
    [48]A.K.Singh,S.Khan,A.Singh,S.M.Quraishi,M.A.Quraishi,E.E.Ebenso,Res.Chem.Intermediates 39(2013)1191-1208.
    [49]C.M.Goulart,A.Esteves-Souza,C.A.Martinez-Huitle,C.J.F.Rodrigues,M.A.M.Maciel,A.Echevarria,Corros.Sci.67(2013)281-291.
    [50]R.A.Prabhu,T.V.Venkatesha,A.Shanbhag,G.M.Kulkarni,R.G.Kalkhambikar,Corros.Sci.50(2008)3356-3362.
    [51]Y.M.Tang,X.Y.Yang,W.Z.Yang,Y.Z.Chen,R.Wan,Corros.Sci.52(2010)242-249.
    [52]C.Pan,W.Y.Lv,Z.Y.Wang,W.Su,C.Wang,S.N.Liu,J.Mater.Sci.Technol.33(2017)587-595.
    [53]A.Lecante,F.Robert,P.A.Blandinieres,C.Roos,Curr.Appli.Phys.11(2011)714-724.
    [54]L.L.Li,B.Zhang,B.Tian,Y.Zhou,J.Q.Wang,E.H.Han,W.Ke,J.Electrochem.Soc.164(2017)C240-C249.
    [55]M.C.Yan,V.J.Gelling,B.R.Hinderliter,D.Battocchi,D.E.Tallman,G.P.Bierwagen,Corros.Sci.52(2010)2636-2642.
    [56]C.S.Liu,J.Q.Wang,Z.M.Zhang,E.H.Han,W.Liu,D.Liang,Z.T.Yang,X.Z.Cao,J.Mater.Sci.Technol.34(2018)2131-2139.
    [57]L.Liu,Q.C.Liu,Y.Cao,J.Yang,J.Therm.Anal.Calorim.125(2016)459-469.
    [58]Y.N.Zhou,X.H.Xing,Z.H.Liu,L.W.Cui,A.F.Yu,Q.Feng,H.J.Yang,Chemosphere 72(2008)290-298.
    [59]M.Bicchieri,M.Monti,G.Piantanida,F.Pinzari,A.Sodo,Vibrat.Spectrosc.55(2011)267-272.
    [60]M.Bicchieri,M.Monti,G.Piantanida,A.Sodo,Anal.Bioanal.Chem.405(2013)2713-2721.
    [61]A.S.Lee,P.J.Mahon,D.C.Creagh,Vibrat.Spectrosc.41(2006)170-175.
    [62]W.Chen,C.M.Li,P.Chen,C.Q.Sun,Electrochim.Acta 52(2007)2845-2849.
    [63]A.S.Lee,V.Otieno-Alego,D.C.Creagh,J.Raman Spectrosc.39(2008)1079-1084.
    [64]E.Kusmierek,E.Chrzescijanska,Mater.Corros.66(2015)169-174.
    [65]H.Ozawa,M.A.Haga,Phys.Chem.Chem.Phys.17(2015)8609-8613.
    [66]M.Morcillo,S.Feliu,J.Simancas,J.M.Bastidas,J.C.Galvan,S.Feliu,E.M.Almeida,Corrosion 48(1992)1032-1039.
    [67]Z.Wang,H.J.Kang,W.Zhang,S.F.Zhang,J.Z.Li,Appl.Surf.Sci.401(2017)271-282.
    [68](a)S.Q.Chen,Y.Xie,T.J.Xiao,W.F.Zhao,J.S.Li,C.S.Zhao,Chem.Eng.J.337(2018)122-132;(b)X.Y.Chen,T.Xiao,et al.,Chem.Eng.J.337(2018)122-132.
    [69]O.Olivares,N.V.Likhanova,B.Gomez,J.Navarrete,M.E.Llanos-Serrano,E.Arce,J.M.Hallen,Appl.Surf.Sci.252(2006)2894-2909.
    [70]X.M.Chen,G.Y.Li,J.S.Lian,Q.Jiang,Surf.Coat.Technol.204(2009)736-747.
    [71]J.Luo,J.P.Lai,N.Zhang,Y.B.Liu,R.Liu,X.Y.Liu,ACS Sustain,Chem.Eng.4(2016)1404-1413.
    [72]Y.Zhang,Y.L.Su,J.M.Peng,X.T.Zhao,J.Z.Liu,J.J.Zhao,Z.Y.Jiang,J.Membrane Sci.429(2013)235-242.
    [73]S.H.Ku,J.Ryu,S.K.Hong,H.Lee,C.B.Park,Biomaterials 31(2010)2535-2541.
    [74]J.H.Zhou,Z.J.Sui,J.Zhu,P.Li,C.De,Y.C.Dai,W.K.Yuan,Carbon 45(2007)785-796.
    [75]M.Stratmann,Ber.Bunsen.Phys.Chem.94(1990)626-639.
    [76]A.A.Rahim,E.Rocca,J.Steinmetz,M.J.Kassim,M.S.Ibrahim,H.Osman,Food Chem.107(2008)200-207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700