Tandem pumping architecture enabled high power random fiberlaser with near-diffraction-limited beam quality
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tandem pumping architecture enabled high power random fiberlaser with near-diffraction-limited beam quality
  • 作者:XU ; JiangMing ; YE ; Jun ; ZHOU ; Pu ; LENG ; JinYong ; XIAO ; Hu ; ZHANG ; HangWei ; WU ; Jian ; CHEN ; JinBao
  • 英文作者:XU JiangMing;YE Jun;ZHOU Pu;LENG JinYong;XIAO Hu;ZHANG HangWei;WU Jian;CHEN JinBao;College of Optoelectronic Science and Engineering, National University of Defense Technology;
  • 英文关键词:random fiber laser;;distributed feedback;;power scalability;;tandem pumping
  • 中文刊名:JEXG
  • 英文刊名:中国科学:技术科学(英文版)
  • 机构:College of Optoelectronic Science and Engineering, National University of Defense Technology;
  • 出版日期:2019-01-01
  • 出版单位:Science China(Technological Sciences)
  • 年:2019
  • 期:v.62
  • 基金:supported by the National Natural Science Foundation of China(Grant Nos.61322505 and 61635005);; Huo Ying Dong Education Foundation of China(Grant No.151062);; the Hunan Provincial Innovation Foundation for Postgraduate Student(Grant No.CX2017B030)
  • 语种:英文;
  • 页:JEXG201901008
  • 页数:7
  • CN:01
  • ISSN:11-5845/TH
  • 分类号:84-90
摘要
In this contribution, we present the tandem pumping avenue leveraged performance scaling of random fiber laser to record 3 kW level with inherent temporal stability and near-diffraction-limited beam quality. The high power system employs a four-stage master oscillator power amplifier chain. The master oscillator is a half-opened cavity structured random distributed feedback fiber laser centered at 1080 nm and pumped by incoherent amplified spontaneous emission source. Narrowband random laser seed is selected by employing a spectral filtering module with a maximum output power of 1.08 W, full width at half maximum linewidth of 0.47 nm and spectral optical-signal-to-noise ratio of about 42 dB. As to the main amplification stage, for given 104 W pre-amplified random laser seed and 3.61 kW pump laser, an ultimate output power of 3.03 kW can be obtained,corresponding to an optical-to-optical conversion efficiency of 81.05%. Nearly single-transverse-mode amplified random laser can be achieved even at full power level for inherent high thermal modal instability threshold enabled by tandem pumping and inducing bending loss for high-order transverse-mode. Further performance scaling of this high power random laser system, such as power boosting, operation wavelength tuning and linewidth alteration, is the next goal.
        In this contribution, we present the tandem pumping avenue leveraged performance scaling of random fiber laser to record 3 kW level with inherent temporal stability and near-diffraction-limited beam quality. The high power system employs a four-stage master oscillator power amplifier chain. The master oscillator is a half-opened cavity structured random distributed feedback fiber laser centered at 1080 nm and pumped by incoherent amplified spontaneous emission source. Narrowband random laser seed is selected by employing a spectral filtering module with a maximum output power of 1.08 W, full width at half maximum linewidth of 0.47 nm and spectral optical-signal-to-noise ratio of about 42 dB. As to the main amplification stage, for given 104 W pre-amplified random laser seed and 3.61 kW pump laser, an ultimate output power of 3.03 kW can be obtained,corresponding to an optical-to-optical conversion efficiency of 81.05%. Nearly single-transverse-mode amplified random laser can be achieved even at full power level for inherent high thermal modal instability threshold enabled by tandem pumping and inducing bending loss for high-order transverse-mode. Further performance scaling of this high power random laser system, such as power boosting, operation wavelength tuning and linewidth alteration, is the next goal.
引文
1 Turitsyn S K,Babin S A,El-Taher A E,et al.Random distributed feedback fibre laser.Nat Photon,2010,4:231-235
    2 Redding B,Choma M A,Cao H.Speckle-free laser imaging using random laser illumination.Nat Photon,2012,6:355-359
    3 Turitsyn S K,Babin S A,Churkin D V,et al.Random distributed feedback fibre lasers.Phys Rep,2014,542:133-193
    4 Churkin D V,Sugavanam S,Vatnik I D,et al.Recent advances in fundamentals and applications of random fiber lasers.Adv Opt Photon,2015,7:516-569
    5 Du X,Zhang H,Xiao H,et al.High-power random distributed feedback fiber laser:From science to application.Ann Der Physik,2016,528:649-662
    6 Huang C,Dong X,Zhang N,et al.Multiwavelength brillouin-erbium random fiber laser incorporating a chirped fiber bragg grating.IEEE JSel Top Quantum Electron,2014,20:294-298
    7 Saleh S,Cholan N A,Sulaiman A H,et al.Stable multiwavelength erbium-doped random fiber laser.IEEE J Sel Top Quantum Electron,2018,24:1-6
    8 Babin S A,El-Taher A E,Harper P,et al.Tunable random fiber laser.Phys Rev A,2011,84:4903-4911
    9 Pang M,Bao X,Chen L.Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser.Opt Lett,2013,38:1866-1868
    10 Zhang L,Jiang H,Yang X,et al.Nearly-octave wavelength tuning of a continuous wave fiber laser.Sci Rep,2017,7:42611
    11 Bravo M,Fernandez-Vallejo M,Lopez-Amo M.Internal modulation of a random fiber laser.Opt Lett,2013,38:1542-1544
    12 Yao B C,Rao Y J,Wang Z N,et al.Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers.Sci Rep,2015,5:18526
    13 Xu J,Ye J,Liu W,et al.Passively spatiotemporal gain-modulationinduced stable pulsing operation of a random fiber laser.Photon Res,2017,5:598-603
    14 Wang Z N,Rao Y J,Wu H,et al.Long-distance fiber-optic pointsensing systems based on random fiber lasers.Opt Express,2012,20:17695-17700
    15 Zhang H,Zhou P,Xiao H,et al.Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power.Laser Phys Lett,2014,11:075104
    16 Zhang H,Zhou P,Wang X,et al.Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150 nm and its application in mid-infrared laser generation.Opt Express,2015,23:17138-17144
    17 Xu J,Lou Z,Ye J,et al.Incoherently pumped high-power linearlypolarized single-mode random fiber laser:Experimental investigations and theoretical prospects.Opt Express,2017,25:5609-5617
    18 Zhang H,Huang L,Zhou P,et al.More than 400 W random fiber laser with excellent beam quality.Opt Lett,2017,42:3347-3350
    19 Zhou P,Huang L,Xu J M,et al.High power linearly polarized fiber laser:Generation,manipulation and application.Sci China Tech Sci,2017,60:1784-1800
    20 Zhang L,Dong J,Feng Y.High-power and high-order random raman fiber lasers.IEEE J Sel Top Quantum Electron,2018,24:1-6
    21 Liu W,Ma P,Lv H,et al.General analysis of SRS-limited high-power fiber lasers and design strategy.Opt Express,2016,24:26715-26721
    22 Du X,Zhang H,Ma P,et al.Kilowatt-level fiber amplifier with spectral-broadening-free property,seeded by a random fiber laser.Opt Lett,2015,40:5311-5314
    23 Xu J,Huang L,Jiang M,et al.Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output.Photon Res,2017,5:350-354
    24 Li Y,Li T,Peng W,et al.Narrow spectrum kilowatt-level mopa seeded by Yb-doped random fiber laser.IEEE Photon Tech Lett,2017,29:1844-1847
    25 Huang L,Xu J,Ye J,et al.Power scaling of linearly polarized random fiber laser.IEEE J Sel Top Quantum Electron,2018,24:1-8
    26 Li T L,Zha C W,Peng W J,et al.2 kW narrow spectrum amplified random fiber laser.Chin J Laser,2017,44:0415003
    27 Chen X L,Zheng Y,Li X,et al.10.6 GHz linewidth maintained random fiber laser seed source.Chin J Laser,2017,44:0701005
    28 Eidam T,Wirth C,Jauregui C,et al.Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers.Opt Express,2011,19:13218-13224
    29 Jauregui C,Eidam T,Otto H J,et al.Physical origin of mode instabilities in high-power fiber laser systems.Opt Express,2012,20:12912
    30 Smith A V,Smith J J.Increasing mode instability thresholds of fiber amplifiers by gain saturation.Opt Express,2013,21:15168
    31 Tao R,Ma P,Wang X,et al.Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength.J Opt,2015,17:045504
    32 Tao R,Ma P,Wang X,et al.Study of wavelength dependence of mode instability based on a semi-analytical model.IEEE J Quantum Electron,2015,51:1600106
    33 Jauregui C,Otto H J,Breitkopf S,et al.Optimizing high-power Ybdoped fiber amplifier systems in the presence of transverse mode instabilities.Opt Express,2016,24:7879-7892
    34 Zervas M N.Transverse mode instability analysis in fiber amplifier.In:Proceedings of SPIE Fiber Lasers XIV:Technology and Systems.San Francisco:SPIE,2017
    35 Xiao H,Zhou P,Wang X,et al.Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier.IEEE Photon Tech Lett,2012,24:1088-1090
    36 Chang Y M,Yao T,Jeong H,et al.3%thermal load measured in tandem-pumped ytterbium-doped fiber amplifier.In:Proceedings of IEEE Conference on Lasers and Electro-Optics(CLEO).San Jose:IEEE,2014
    37 Jebali M A,Maran J N,LaRochelle S.264 W output power at 1585nm in Er-Yb codoped fiber laser using in-band pumping.Opt Lett,2014,39:3974-3977
    38 Zervas M N,Codemard C A.High power fiber lasers:A review.IEEEJ Sel Top Quantum Electron,2014,20:219-241
    39 Xiao H,Leng J,Zhang H,et al.High-power 1018 nm ytterbiumdoped fiber laser and its application in tandem pump.Appl Opt,2015,54:8166-8169
    40 Zhou P,Xiao H,Leng J,et al.High-power fiber lasers based on tandem pumping.J Opt Soc Am B,2017,34:A29-A36
    41 Li J,Ueda K I,Musha M,et al.Residual pump light as a probe of selfpulsing instability in an ytterbium-doped fiber laser.Opt Lett,2006,31:1450-1452
    42 Upadhyaya B N,Kuruvilla A,Chakravarty U,et al.Effect of laser linewidth and fiber length on self-pulsing dynamics and output stabilization of single-mode Yb-doped double-clad fiber laser.Appl Opt,2010,49:2316-2325
    43 Nu?o J,Alcon-Camas M,Ania-Casta?ón J D.RIN transfer in random distributed feedback fiber lasers.Opt Express,2012,20:27376-27381
    44 Lou Z,Xu J,Huang L,et al.Linearly-polarized random distributed feedback Raman fiber laser with record power.Laser Phys Lett,2017,14:055102
    45 Wang P,Sahu J K,Clarkson W A.Power scaling of ytterbium-doped fiber superfluorescent sources.IEEE J Sel Top Quantum Electron,2007,13:580-587
    46 Xu J,Huang L,Leng J,et al.1.01 kW superfluorescent source in allfiberized MOPA configuration.Opt Express,2015,23:5485-5490
    47 Wang W,Leng J,Gao Y,et al.Influence of temporal characteristics on the power scalability of the fiber amplifier.Laser Phys,2015,25:035101
    48 Zhang W L,Rao Y J,Zhu J M,et al.Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity.Opt Express,2012,20:14400-14405
    49 Wang Z,Wu H,Fan M,et al.High power random fiber laser with short cavity length:Theoretical and experimental investigations.IEEEJ Sel Top Quantum Electron,2015,21:10-15
    50 Park K D,Min B,Kim P,et al.Dynamics of cascaded BrillouinRayleigh scattering in a distributed fiber Raman amplifier.Opt Lett,2002,27:155-157
    51 Xu J,Zhou P,Leng J,et al.Powerful linearly-polarized high-order random fiber laser pumped by broadband amplified spontaneous emission source.Sci Rep,2016,6:35213
    52 Brilliant N A,Lagonik K.Thermal effects in a dual-clad ytterbium fiber laser.Opt Lett,2001,26:1669-1671
    53 Zhou P,Wang X,Xiao H,et al.Review on recent progress on Ybdoped fiber laser in a variety of oscillation spectral ranges.Laser Phys,2012,22:823-831
    54 Liu W,Kuang W,Huang L,et al.Modeling of the spectral properties of CW Yb-doped fiber amplifier and experimental validation.Laser Phys Lett,2015,12:045104
    55 Tao R,Su R,Ma P,et al.Suppressing mode instabilities by optimizing the fiber coiling methods.Laser Phys Lett,2017,14:025101
    56 Huang L,Kong L,Leng J,et al.Impact of high-order-mode loss on high-power fiber amplifiers.J Opt Soc Am B,2016,33:1030-1037
    57 Kong L,Leng J,Zhou P,et al.Thermally induced mode loss evolution in the coiled ytterbium doped large mode area fiber.Opt Express,2017,25:23437-23450

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700