改善效率的0.14 THz折叠波导慢波结构设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Efficiency improvement design of 0.14 THz folded waveguide slow wave structure
  • 作者:雷文强 ; 蒋艺 ; 周泉丰 ; 胡鹏 ; 马国武 ; 陈洪斌
  • 英文作者:LEI Wenqiang;JIANG Yi;ZHOU Quanfeng;HU Peng;MA Guowu;CHEN Hongbing;Institute of Applied Electronics,China Academy of Engineering Physics;
  • 关键词:0.14 ; THz折叠波导行波管 ; 三段相速跳变 ; 速度再同步 ; 色散分析 ; 大信号程序计算
  • 英文关键词:0.14 THz folded waveguide Traveling Wave Tubes;;three sections phase velocity taper;;velocity synchronization;;dispersion analysis;;large signal program calculation
  • 中文刊名:XXYD
  • 英文刊名:Journal of Terahertz Science and Electronic Information Technology
  • 机构:中国工程物理研究院应用电子学研究所;
  • 出版日期:2017-08-25
  • 出版单位:太赫兹科学与电子信息学报
  • 年:2017
  • 期:v.15
  • 语种:中文;
  • 页:XXYD201704003
  • 页数:5
  • CN:04
  • ISSN:51-1746/TN
  • 分类号:18-22
摘要
在研究0.14 THz折叠波导行波管中,提出一种三段相速跳变的设计,使得电子能够在输出段与行波场发生速度再同步,从而提高了电子工作效率。根据色散公式,找到一种影响相速变化的结构因素。通过优化设计进行大信号程序计算,在电压14.95 k V、工作电流30 m A时,与未采用相速变化的结构相比,140 GHz时功率提高了0.84 W,效率提高了9.13%;在142 GHz时功率提高了0.88 W,效率提高了10.4%;-1 d B带宽由原来的5 GHz提高到7 GHz,扩展了行波管的带宽,提高了电子与波的互作用效率。
        The design of three sections phase velocity taper is put forward in 0.14 THz folded waveguide Traveling Wave Tubes(TWT) research. It can maintain beam-traveling wave velocity synchronization again in output section of interaction circuit and improve the beam operating efficiency. A structure parameter impacting on phase velocity change is found and optimized by slow wave structure dispersion equation. After optimizing design, a large signal program calculation is performed under operating voltage 14.95 k V and current 30 m A. Compared with the structure without phase velocity taper, the efficiency is improved by 9.13% in 140 GHz, and the output power in improved by 0.84 W. The efficiency is improved by 10.4% in 142 GHz, and the output power is improved by 0.88 W.-1 d B bandwidth is improved to 7 GHz from 5 GHz. The design improves the bandwidth and beam-traveling wave work efficiency in D band folded waveguide traveling wave tubes.
引文
[1]冯进军.集成真空电子学[J].真空电子技术,2010(2):1-7.(FENG Jinjun.Integration microwave vacuum electronics[J].Vacuum Electronics,2010(2):1-7.)
    [2]张章.太赫兹行波管的研究进展[J].激光与红外,2012,42(3):250-257.(ZHANG Zhang.Research progress of THz traveling wave tubes[J].Laser&Infrared,2012,42(3):250-257).
    [3]雷文强,蒋艺,胡林林,等.0.14 THz折叠波导行波管的设计与实验研究[J].太赫兹科学与电子信息学报,2014,12(3):334-338.(LEI Wenqiang,JIANG Yi,HU Linlin,et al.Design and experiment for 0.14 THz Folded Waveguide Traveling Wave Tubes[J].Journal of Terahertz Science and Electronic Information Technology,2014,12(3):334-338.)
    [4]雷文强,蒋艺,周泉丰,等.D波段7 W连续波折叠波导行波管的研制[J].太赫兹科学与电子信息学报,2016,14(2):13-18.(LEI Wenqiang,JIANG Yi,ZHOU Quanfeng,et al.Research for D band 7 W continuous-wave Folded Waveguide Traveling Wave Tube[J].Journal of Terahertz Science and Electronic Information Technology,2016,14(2):13-18.)
    [5]GHOSH T K,CHALLIS A J,JACOB A,et al.Design of helix pitch profile for broadband Traveling-Wave Tubes[J].IEEE Transactions on Electron Devices,2009,56(5):1135-1140.
    [6]SRIVASTAVA V,CARTER R G,RAVINDER B,et al.Design of helix slow-wave structure for high efficiency TWTs[J].IEEE Transactions on Electron Devices,2000,47(12):2438-2443.
    [7]HAN S T,JANG K H,SO J K,et al.Low-voltage operation of Ka-band folded waveguide traveling-wave tube[J].IEEE Trans.Plasma Science,2004,32(1):60-66.
    [8]BOOSKE J H,CONVERSE M C,KORY C L,et al.Accurate parametric modeling of folded waveguide circuits for millimeter-wave traveling wave tubes[J].IEEE Transactions on Electron Devices,2005,52(5):685-694.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700