负载CuO的Ti~(3+)/TiO_2催化剂制备及其光催化甲苯降解性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of the Ti~(3+)/TiO_2 supported CuO catalyst and its photocatalytic performance in the degradation of toluene
  • 作者:周文君 ; 沈伯雄 ; 张芹 ; 王欣怡 ; 卢凤菊
  • 英文作者:ZHOU Wen-jun;SHEN Bo-xiong;ZHANG Qin;WANG Xin-yi;LU Feng-ju;School of Energy & Environmental Engineering,Hebei University of Technology;
  • 关键词:Ti3+/TiO2 ; CuO ; 甲苯脱除 ; Cu-BTC ; 光催化
  • 英文关键词:Ti3+/TiO2;;CuO;;toluene removal;;Cu-BTC;;photocatalysis
  • 中文刊名:RLHX
  • 英文刊名:Journal of Fuel Chemistry and Technology
  • 机构:河北工业大学能源与环境工程学院;
  • 出版日期:2019-02-26 10:18
  • 出版单位:燃料化学学报
  • 年:2019
  • 期:v.47
  • 基金:国家重点研发计划项目(2018YFB0605101);; 天津自然科学基金重点(18JCZDJC39800);; 天津科技重大专项(18ZXSZSF00040);; 天津市科普项目(18KPXMSF00080);; 唐山市科技项目(18130211A)资助~~
  • 语种:中文;
  • 页:RLHX201902015
  • 页数:8
  • CN:02
  • ISSN:14-1140/TQ
  • 分类号:132-139
摘要
通过在锐钛矿TiO_2载体表面上负载Cu-BTC(BTC,1,3,5-苯甲酸)前驱体,还原处理制备光催化剂CuO-Ti~(3+)/TiO_2(Cu-TiMB),对其在可见光条件下气相甲苯净化催化性能进行了研究。结果表明,该改良方法制备的CuO-Ti~(3+)/TiO_2(CuTiM B)催化剂的活性是浸渍法所得催化剂CuO-TiO_2(Cu-TiD)的2.68倍。CuO-Ti~(3+)/TiO_2(Cu-TiMB)具有更大的比表面积(147 m2/g)和较小的颗粒粒径(0.45μm),呈现多孔状,CuO的分散度较高;催化剂表面Ti~(3+)提供了大量的氧缺位,在400-800 nm波段的光响应能力显著增强。CuO-Ti~(3+)/TiO_2(Cu-TiMB)催化剂中Cu~(2+)、Cu~+与Ti~(3+)形成的异质结构进一步增多了氧缺位数量,延缓e--h+的复合时间;氧缺陷增强了捕获吸附氧能力,通过金属氧化物价态变化增强化学吸附能力,提高了光催化性能。
        The CuO-Ti~(3+)/TiO_2( Cu-TiMB) pholocatalyst was prepared by reducing TiO_2 loaded with Cu-BTC( BTC,1,3,5-benzoic acid) precursor; its photocatalytic performance in the removal of gaseous toluene was investigated. The result indicated that the toluene removal efficiency of CuO-Ti~(3+)/TiO_2( Cu-TiMB) by visible irradiation was 2.68 time higher than that of CuO-TiO_2( Cu-TiD) prepared by impregnation. The CuO-Ti~(3+)/TiO_2( Cu-TiMB) catalyst shows relatively high surface area( 147 m2/g),small particle size( 0. 45 μm),porous structure and high CuO dispersion; Ti~(3+)may provide a large number of oxygen vacancies, which can significantly enhance the photocatalytic response at 400-800 nm. In addition, Cu2+and Cu+may form heterogeneous structure with Ti~(3+),which can further increase the number of oxygen vacancies and delay the electron-hole pairs( e--h+) recombination time. The oxygen vacancies are effective in enhancing the ability for capturing adsorption oxygen,promoting the chemisorption ability by changing the valence state of metal oxides,and then improving the photocatalytic performance.
引文
[1] YANG C,QIAN H,LI X,CHENG Y,HE H,ZENG G,XI J. Simultaneous removal of multicomponent VOCs in Biofilters[J]. Trends Biotechnol,2018,36(7):673-685.
    [2] GREGIS G,SCHAEFER S,SANCHEZ J B,FIERRO V,BERGER F,BEZVERKHYY I,WEBER G,BELLAT J P,CELZARD A.Characterization of materials tow ard toluene traces detection for air quality monitoring and lung cancer diagnosis[J]. M ater Chem Phys,2017,192:374-382.
    [3] MAZIERSKI P,MIKOLAJCZYK A,BAJOROWICZ B,MALANKOWSKA A,ZALESKA-MEDYNSKA A,NADOLNA J. The role of lanthanides in TiO2-based photocatalysis:A review[J]. Appl Catal B:Environ,2018,233:301-317.
    [4] TAN H,ZHAO Z,NIU M,MAO C,CAO D,CHENG D,FENG P,SUN Z. A facile and versatile method for preparation of colored TiO2w ith enhanced solar-driven photocatalytic activity[J]. Nanoscale,2014,6(17):10216-10223.
    [5] HU Y,DAI L,LIU D,DU W,WANG Y. Progress&prospect of metal-organic frameworks(MOFs)for enzyme immobilization(enzyme/M OFs)[J]. Renew able Sustainable Energy Rev,2018,91:793-801.
    [6] LIU H,ZHANG S,LIU Y,YANG Z,FENG X,LU X,HUO F. Well-dispersed and size-controlled supported metal oxide nanoparticles derived from M OF composites and further application in catalysis[J]. Small,2015,11(26):3130-3134.
    [7] HAIDER A J,AL ANBARI R H,KADHIM G R,SALAME C T. Exploring potential Environmental applications of TiO2nanoparticles[J].Energy Procedia,2017,119:332-345.
    [8]李远洋,晏良宏,江波.一种简单的提高无定形TiO2光催化活性的方法及其在增透膜中的应用[J].无机化学学报,2018,34(9):91701-91709.(LI Yuan-yang,YAN Liang-hong,JIANG Bo. Simple way to enhance the photocatalytic activity and application in antireflective coatings for amorphous TiO2[J]. Chin J Inorg Chem,2018,34(9):91701-91709.)
    [9] RAZALI M H,YUSOFF M. Highly efficient CuO loaded TiO2nanotube photocatalyst for CO2photoconversion[J]. M ater Lett,2018,221:168-171.
    [10] KAUR R,KAUR A,UMAR A,ANDERSON W A,KANSAL S K. Metal organic framework(MOF)porous octahedral nanocrystals of CuBTC:Synthesis,properties and enhanced absorption properties[J]. M ater Res Bull,2019,109:124-133.
    [11] CHAUDHARY R,JUNEJA H,PAGADALA R,GANDHARE N,GHARPURE M. Synthesis,characterisation and thermal degradation behaviour of some coordination polymers by using TG-DTG and DTA techniques[J]. J Saudi Chem Soc,2015,19(4):442-453.
    [12] COLN G,MAICU M,HIDALGO M C,NAVO J A. Cu-doped TiO2systems w ith improved photocatalytic activity[J]. Appl Catal B:Environ,2006,67(1/2):41-51.
    [13]朱鹏飞,刘梅,牛笛,王斯. Cu-Fe-TiO2膨润土复合光催化剂的表征及性能[J].光谱实验室,2013,30(3):1277-1281.(ZHU Peng-fei,LIU Mei,NIU Di,WANG Si. Characterization and property of Cu-Fe-TiO2/bentonite composite photocatalyst[J]. Chin J Spectr Lab,2013,30(3):1277-1281.)
    [14] MARX S,KLEIST W,BAIKER A. Synthesis,structural properties,and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives[J]. J Catal,2011,281(1):76-87.
    [15] LIU S,YUAN S,ZHANG Q,XU B,WANG C,HANG M,OHNO T. Fabrication and characterization of black TiO2w ith different Ti3+concentrations under atmospheric conditions[J]. J Catal,2018,366:282-288.
    [16] POZAN G S,ISLEYEN M,GOKCEN S. Transition metal coated TiO2nanoparticles:Synthesis,characterization and their photocatalytic activity[J]. Appl Catal B:Environ,2013,140-141:537-545.
    [17] WANG B,SUN Q,LIU S,LI Y. Synergetic catalysis of CuO and graphene additives on TiO2for photocatalytic w ater splitting[J]. Int J Hydrogen Energy,2013,38(18):7232-7240.
    [18] WANG X,LI Y,LIU X,GAO S,HUANG B,DAI Y. Preparation of Ti3+self-doped TiO2nanoparticles and their visible light photocatalytic activity[J]. Chin J Catal,2015,36(3):389-399.
    [19] BAI Y S,CHEN S,LU L D,BAO J C. Study of degradation of photocatalytic methyl orange on nano study of degradation of photocatalytic methyl orange on nano NdxCo2-xZr2O7[J]. Adv Mater Res,2012,602-604:169-173.
    [20] PENG B,FENG C,LIU S,ZHANG R. Synthesis of CuO catalyst derived from HKUST-1 temple for the low-temperature NH3-SCR process[J]. Catal Today,2018,314:122-128.
    [21] YU X,FAN X,AN L,LI Z,LIU J. Facile synthesis of Ti3+-TiO2mesocrystals for efficient visible-light photocatalysis[J]. J Phys Chem Solids,2018,119:94-99.
    [22] LEE J,LI Z,ZHU L,XIE S,CUI X. Ti3+self-doped TiO2via facile catalytic reduction over Al(acac)3w ith enhanced photoelectrochemical and photocatalytic activities[J]. Appl Catal B:Environl,2018,224:715-724.
    [23] YIN H,ZHU J,CHEN J,GONG J,NIE Q. MOF-derived in situ growth of carbon nanotubes entangled Ni/NiO porous polyhedrons for high performance glucose sensor[J]. M ater Lett,2018,221:267-270.
    [24] ZENG Y,WANG T,ZHANG S,WANG Y,ZHONG Q. Sol-gel synthesis of CuO-TiO2catalyst w ith high dispersion CuO species for selective catalytic oxidation of NO[J]. Appl Surf Sci,2017,411:227-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700