先共析铁素体相变过程中碳的超长程扩散(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Super long-range diffusion of carbon during proeutectoid ferrite transformation
  • 作者:张所全 ; 焦四海 ; 丁建华 ; 万迪 ; 刘振宇 ; 王国栋
  • 英文作者:ZHANG Suo-quan;JIAO Si-hai;DING Jian-hua;WAN Di;LIU Zhen-yu;WANG Guo-dong;State Key Laboratory of Rolling and Automation, Northeastern University;Research Institute, Baoshan Iron & Steel Co., Ltd.;Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology;
  • 关键词:低碳钢 ; 局部相变 ; 超长程扩散 ; 界面控制模式
  • 英文关键词:low carbon steel;;local transformation;;super long-rang diffusion;;interface-controlled mode
  • 中文刊名:ZNGY
  • 英文刊名:中南大学学报(英文版)
  • 机构:State Key Laboratory of Rolling and Automation, Northeastern University;Research Institute, Baoshan Iron & Steel Co., Ltd.;Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology;
  • 出版日期:2019-03-15
  • 出版单位:Journal of Central South University
  • 年:2019
  • 期:v.26
  • 基金:Project(16PJ1430200)supported by Shanghai Pujiang Program,China
  • 语种:英文;
  • 页:ZNGY201903006
  • 页数:7
  • CN:03
  • ISSN:43-1516/TB
  • 分类号:64-70
摘要
为研究先共析铁素体相变过程中碳原子可能的扩散距离,在热模拟的真空环境下进行了低碳钢的缓冷试验,分析了金相组织和热膨胀曲线,并测量了试样芯部的碳含量。观察金相组织发现试样的表面获得了450μm厚的铁素体层,该铁素体层中不含珠光体。热膨胀曲线显示不含珠光体的铁素体层形成于全局相变之前的局部相变过程中。试样芯部的碳含量(0.061%)显著高于基体材料的碳含量(0.054%)。结果表明,碳从试样表层到试样芯部发生了超长程扩散。局部相变主要为界面控制模式,界面迁移速率大约为2.25μm/s。
        In order to explore the possible diffusion distance of carbon during proeutectoid ferrite transformation, a slow cooling test of low carbon steel was carried out under vacuum of the thermal simulator. The microstructure and thermal expansion curve were discussed and the carbon concentration inside the sample was measured. The ferrite layer of about 450 μm thickness was obtained without pearlite on the surface of the sample in the microstructure. The thermal expansion curve shows that the ferrite layer without pearlite is formed during the local phase transformation, which is followed by the global transformation. The carbon concentration in the core of the sample(0.061%) is significantly higher than that of the bulk material(0.054%). All results show that carbon has long-range diffusion from the outer layer to the inner layer of the sample. The transformation is predominantly interface-controlled mode during local transformation, and the interface migration rate is about 2.25 μm/s.
引文
[1]?GREN J.Computer simulations of the austenite/ferrite diffusional transformations in low alloyed steels[J].Acta Metallurgica,1982,30(4):841-851.
    [2]?GREN J.A revised expression for the diffusivity of carbon in binary Fe-C austenite[J].Scripta Metallurgica,1986,20(11):1507-1510.
    [3]JIANG D,CARTER E A.Carbon dissolution and diffusion in ferrite and austenite from first principles[J].Physical Review B,2003,67(21):214103.
    [4]XIA Chang-qing,JIN Zhan-peng.Examination of carbon diffusion in niobium clad steel composite[J].Journal of Central South University of Technology,1999,6(1):1-3.
    [5]ZHANG Xing,TANG Jin-yuan,ZHANG Xue-rui.An optimized hardness model for carburizing-quenching of low carbon alloy steel[J].Journal of Central South University,2017,24(1):9-16.
    [6]LIU Z K.Theoretic calculation of ferrite growth in supersaturated austenite in Fe-C alloy[J].Acta Materialia,1996,44(9):3855-3867.
    [7]BHADESHIA H,SVENSSON L E,GRETOFT B.A model for the development of microstructure in low-alloy steel(Fe-Mn-Si-C)weld deposits[J].Acta Metallurgical,1985,33(7):1271-1283.
    [8]ENOMOTO M.Prediction of TTT-diagram of proeutectoid ferrite reaction in iron-alloys from diffusion growth theory[J].ISIJ International,1992,32(3):297-305.
    [9]REED R,BHADESHIA H.Kinetics of reconstructive austenite to ferrite transformation in low alloy steels[J].Materials Science and Technology,1992,8(5):421-436.
    [10]VANDERMEER R.Modeling diffusional growth during austenite decomposition to ferrite in polycrystalline Fe-Calloys[J].Acta Metallurgica et Materialia,1990,38(12):2461-2470.
    [11]YE Jian-song,CHANG Hong-bing,HSU T.Modeling for formation of proeutectoid ferrite in steel during continuous cooling[J].Journal of Iron and Steel Research International,2004,11(6):33-36.
    [12]ZENER C.Theory of growth of spherical precipitates from solid solution[J].Journal of Applied Physics,1949,20(10):950-953.
    [13]CHRISTIAN J W.The theory of transformations in metals and alloys[M].Oxford:Pergamon,2002:422-479.
    [14]NOLFI F V,SHEWMON P G,FOSTER J S.Dissolution and growth kinetics of spherical precipitates[J].Transactions of the Metallurgical Society of AIME,1969,245(7):1427-1433.
    [15]KRIELAART G,van der ZWAAG S.Simulations of pro-eutectoid ferrite formation using a mixed control growth model[J].Materials Science and Engineering A,1998,246(1,2):104-116.
    [16]KRIELAART G P,SIETSMA J,van der ZWAAG S.Ferrite formation in Fe-C alloys during austenite decomposition under nonequilibrium interface conditions[J].Materials Science and Engineering A,1997,237(2):216-223.
    [17]KOP T,van LEEUWEN Y,SIETSMA J,van der ZWAAG S.Modelling the austenite to ferrite phase transformation in low carbon steels in terms of the interface mobility[J].ISIJInternational,2000,40(7):713-718.
    [18]van LEEUWEN Y,KOP T,SIETSMA J,van der ZWAAG S.Phase transformations in low-carbon steels;modelling the kinetics in terms of the interface mobility[C]//3rd European Mechanics of Materials Conference on Mechanics and Multi-Physics Processes in Solids:Experiments,Modelling,Applications.1999:401-409.DOI:https://doi.org/10.1051/jp4:1999941.
    [19]van LEEUWEN Y,SIETSMA J,van der ZWAAG S.The influence of carbon diffusion on the character of the gamma-alpha phase transformation in steel[J].ISIJInternational,2003,43(5):767-773.
    [20]van LEEUWEN Y,VOOIJS S,SIETSMA J,van der ZWAAG S.The effect of geometrical assumptions in modeling solid-state transformation kinetics[J].Metallurgical and Materials Transactions A,1998,29(12):2925-2931.
    [21]SIETSMA J,van der ZWAAG S.A concise model for mixed-mode phase transformations in the solid state[J].Acta Materialia,2004,52(14):4143-4152.
    [22]WU Rui-heng,RUAN Xue-yu,ZHANG Hong-bing,HSU TY.A mixed-controll mechanism model of proeutectoid ferrite growth under non-equilibrium interface condition in Fe-Calloys[J].Journal of Materials Science&Technology,2004,20(5):561-566.
    [23]ONINK M,TICHELAAR F,BRAKMAN C,MITTEMEIJER E,van der ZWAAG S.An in situ hot stage transmission electron microscopy study of the decomposition of Fe-C austenites[J].Journal of Materials Science,1995,30(24):6223-6234.
    [24]MOSAYEBIDORCHEH S,RAHIMI-GORJI M,GANJI D D,MOAYEBIDORCHEH T,POURMEHRAN O,BIGLARIAN M.Transient thermal behavior of radial fins of rectangular,triangular and hyperbolic profiles with temperature-dependent properties using DTM-FDM[J].Journal of Central South University,2017,24(3):675-682.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700