超级电容器用二维Ti_3C_2T_x过渡金属碳/氮化物材料的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent advance on the 2D Ti_3C_2T_x MXene materials in supercapacitor field
  • 作者:张洵 ; 李培 ; 王政德 ; 王先鹏 ; 张伟 ; 檀杰 ; 吕耀辉
  • 英文作者:Xun ZHANG;Pei LI;Zhengde WANG;Xianpeng WANG;Wei ZHANG;Jie TAN;Yaohui Lü;School of Materials Science and Engineering, Anhui University of Technology;
  • 关键词:Ti3C2Tx ; 二维材料 ; 超级电容器
  • 英文关键词:Ti3C2Tx;;two dimensional material;;supercapacitor
  • 中文刊名:HGYJ
  • 英文刊名:The Chinese Journal of Process Engineering
  • 机构:安徽工业大学材料科学与工程学院;
  • 出版日期:2019-02-15
  • 出版单位:过程工程学报
  • 年:2019
  • 期:v.19
  • 基金:安徽省教育厅自然科学研究重点项目(编号:KJ2016A102);; 安徽省自然科学基金面上项目(编号:1808085ME138);; 国家级大学生创新创业训练计划资助项目(编号:201710360024,201710360026)
  • 语种:中文;
  • 页:HGYJ201901006
  • 页数:10
  • CN:01
  • ISSN:11-4541/TQ
  • 分类号:42-51
摘要
近年来二维过渡金属碳/氮化物(MXene)材料由于其独特的物理/化学性能,在储能领域引起广泛的关注。其中以二维Ti3C2Tx材料的研究最为普遍。MAX相是一类三元氮化物和/或碳化物,其化学式为Mn+1AXn (n=1~3),M代表过渡金属元素(如Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo等),X是碳和/或氮,A主要是IIIA或IVA族元素。根据n不同,MAX相的晶体结构包括3种类型。MAX相中,M-X和M-A键强度都很高。无法通过剪切或其它机械方法分层剥离。由于M-A键比M-X键具有更高的化学活性,可以通过化学刻蚀M-A键并辅助剥离方法获得单层/少层的MXenes材料。表面基团随机分布,对电化学性能有重要的影响。调控表面基团的种类和数量是当前研究的重要内容。本工作介绍了MXene相的基本结构,分析了相结构与性能的关系。总结了通过离子插入、热处理、表面改性、电极设计和元素掺杂等手段改善MXene相材料电化学性能的研究进展,简要介绍了MXenes与碳材料、氧化物、聚合物复合在超级电容器领域中的应用进展。对MXene相材料的结构、制备及电化学性能等方面进行了综述,指出了MXene相材料用于超级电容器领域存在的主要问题及未来的发展方向。
        In recent years, two-dimensional(2 D) MXene materials have attracted a great deal of research interests in the field of energy storage, due to their extraordinary physical/chemical properties. The investigation of the 2 D Ti3 C2 Tx is the most prevalent. MAX phase is a kind of ternary nitrides and/or carbide, its chemical formula for Mn+1 AXn(n=1~3), M represents the transition metal elements(such as Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, etc.), X is the carbon and/or nitrogen, A is main IIIA or IVA group elements. According to different n values, the crystal structure of MAX phase includes 3 types. In the MAX phase, the bonds of M-X and M-A are very strong. Therefore, it is impossible to separate the layers by cutting or other mechanical methods. However, because the M-A bond has higher chemical activity than the M-X bond, the single-layer/low-layer MXenes material can be obtained by chemical etching of M-A bond assisted auxiliary method, and the surface terminations are randomly distributed. Surface terminations play an important role in electrochemical performance. Therefore, how to control the type and quantity of surface terminations is an important part in the current research field. The fundamental structure of the MXene phase was introduced and the relationship between phase structure and performance was analyzed in this work. The electrochemical performances of Mxene phase materials improved by ion implantation, heat treatment, surface modification, electrode design and elemental doping were summarized. Meanwhile, in order to further improve the conductivity and cyclic stability of the materials, the application progress of the composites with carbon, oxide and polymer in the field of supercapacitor was briefly introduced. Phase structure, preparation and electrochemical properties of Mxene material were reviewed, the existing problems and future development direction for Mxene phase materials used in supercapacitor fields were pointed out.
引文
[1]Zhang H.Ultrathin two-dimensional nanomaterials[J].ACS Nano,2015,9(10):9451-9469.
    [2]Naguib M,Kurtoglu M,Presser V,et al.Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J].Advanced Materials,2011,23:4248-4253.
    [3]Okubo M,Sugahara A,Kajiyama S,et al.MXene as a charge storage host[J].Accounts of Chemical Research,2018,51(3):591-599.
    [4]Anasori B,Lukatskaya M R,Gogotsi Y.2D metal carbides and nitrides(MXenes)for energy storage[J].Nature Reviews Materials,2017,2(2):16098.
    [5]Tang Q,Zhou Z,Shen P.Are MXenes promising anode materials for Li ion batteries?[J].Journal of the American Chemical Society,2012,134(40):16909-16.
    [6]Wang H W,Naguib M,Page K,et al.Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function[J].Chemistry of Materials,2015,28(1):349-359.
    [7]Hope M A,Forse A C,Griffith K J,et al.NMR reveals the surface functionalization of Ti3C2 MXene[J].Physical Chemistry Chemical Physics,2016,18(7):5099-5102.
    [8]Urbankowski P,Anasori B,Makaryan T,et al.Synthesis of twodimensional titanium nitride Ti4N3(MXene)[J].Nanoscale,2016,8(22):11385-11391.
    [9]Hoffman E N,Yushin G,El-Raghy T,et al.Micro and mesoporosity of carbon derived from ternary and binary metal carbides[J].Microporous and Mesoporous Materials,2008,112(1):526-532.
    [10]Presser V,Heon M,Gogotsi Y.Carbide-derived carbons-from porous networks to nanotubes and grapheme[J].Advanced Functional Materials,2015,21(5):810-833.
    [11]Barsoum M W,Elraghy T,Farber L,et al.The topotactic transformation of Ti3SiC2 into a partially ordered cubic Ti(C0.67Si0.06)phase by the diffusion of Si into molten cryolite[J].Journal of the Electrochemical Society,1999,146(10):3919-3923.
    [12]El-Raghy T,Barsoum M W,Sika M.Reaction of Al with Ti3SiC2 in the 800~1000℃temperature range[J].Materials Science and Engineering:A,2001,298(1/2):174-178.
    [13]Barsoum M W,Golczewski J,Seifert H J,et al.Fabrication and electrical and thermal properties of Ti2InC,Hf2InC and(Ti,Hf)2InC[J].Journal of Alloys and Compounds,2002,33(52):173-179.
    [14]Xu C,Wang L,Liu Z,et al.Large-area high-quality 2D ultrathin Mo2C superconducting crystals[J].Nature Materials,2015,14(11):1135-1141.
    [15]Naguib M,Mashtalir O,Carle J,et al.Two-dimensional transition metal carbides[J].ACS Nano,2012,6(2):1322-1331.
    [16]Alhabeb M,Maleski K,Anasori B,et al.Guidelines for synthesis and processing of two-dimensional titanium carbide(Ti3C2Tx MXene)[J].Chemistry of Materials,2017,29(1):7633-7644.
    [17]Ghidiu M,Lukatskaya M R,Zhao M Q,et al.Conductive twodimensional titanium carbide‘clay’with high volumetric capacitance[J].Nature,2014,516(7529):78-81.
    [18]Lipatov A,Alhabeb M,Lukatskaya M R,et al.MXene materials:effect of synthesis on quality,electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes[J].Advanced Electronic Materials,2016,2(12):1600255.
    [19]Shahzad F,Alhabeb M,Hatter C B,et al.Electromagnetic interference shielding with 2D transition metal carbides(MXenes)[J].Science,2016,353(6304):1137-1140.
    [20]Khazaei M,Arai M,Chung C Y,et al.Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides[J].Advanced Functional Materials,2013,23(17):2185-2192.
    [21]Khazaei M,Ranjbar A,Ghorbaniasl M,et al.Nearly free electron states in MXenes[J].Physical Review B,2016,93(20):205125.
    [22]Miranda A,Halim J,Barsoum M W,et al.Electronic properties of freestanding Ti3C2Tx MXene monolayers[J].Applied Physics Letters,2016,108:033102.
    [23]Mashtalir O,Naguib M,Mochalin V N,et al.Intercalation and delamination of layered carbides and carbonitrides[J].Nature Communications,2013,4(2):1716.
    [24]Mashtalir O,Lukatskaya M R,Zhao M Q,et al.Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices[J].Advanced Materials,2015,27(23):3501.
    [25]Naguib M,Mashtalir O,Lukatskkaya M R,et al.One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes[J].Chemical Communications,2014,50(56):7420.
    [26]Ghassemi H,Harlow W,Mashtalir O,et al.In situ environmental transmission electron microscopy study of oxidation of twodimensional Ti3C2 and formation of carbon-supported TiO2[J].Journal of Materials Chemistry A,2014,2(35):14339-14343.
    [27]Rakhi R B,Ahmed B,Hedhili M N,et al.Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications[J].Chemistry of Materials,2015,27(15):5314-5323.
    [28]Xie Y,Naguib M,Mochalin V N,et al.Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides[J].Journal of the American Chemical Society,2014,136(17):6385.
    [29]Li J,Yuan X,Lin C,et al.Achieving high pseudocapacitance of 2Dtitanium carbide(MXene)by cation intercalation and surface modification[J].Advanced Energy Materials,2017,7(15):1602725.
    [30]Hu M,Hu T,Li Z,et al.Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene[J].ACS Nano,2018,12(4):3578-3586.
    [31]Lukatskaya M R,Kota S,Lin Z,et al.Ultra-high-rate pseudocapacitive energy storage in two-dimensional transiton metal carbides[J].Nature Energy,2017,2(10):17105.
    [32]Wen Y,Rufford T E,Chen X,et al.Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors[J].Nano Energy,2017,38:368-376.
    [33]Zhao M Q,Ren C E,Ling Z,et al.Flexible MXene/carbon nanotube composite paper with high volumetric capacitance[J].Advanced Materials,2015,27(2):339-345.
    [34]Lin Z A,Sun D A,Huang Q B,et al.Carbon nanofiber bridged twodimensional titanium carbide as a superior anode for lithium-ion batteries[J].Journal of Materials Chemistry A,2015,3(27):14096-14100.
    [35]Rakhi R B,Ahmed B,Anjum D,et al.Direct chemical synthesis of MnO2 nanowhiskers on transition-metal carbide surfaces for supercapacitor applications[J].ACS Applied Materials&Interfaces,2016,8(29):18806-18814.
    [36]Wang Y,Dou H,Wang J,et al.Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors[J].Journal of Power Sources,2016,327:221-228.
    [37]Boota M,Anasori B,Voigt C,et al.Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide(MXene)[J].Advanced Materials,2016,28(7):1517-1522.
    [38]Zhu M,Huang Y,Deng Q,et al.Highly flexible,freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene[J].Advanced Energy Materials,2016,6(21):1600969.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700