选区激光熔化成形Ti6Al4V合金微弧氧化生物活性膜层的制备、结构及性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation, Structure and Properties of Micro-arc Oxidation Bio-coatings on Selective Laser Melting Fabricated Ti6Al4V Alloy
  • 作者:常煜 ; 赵国瑞 ; 闫星辰 ; 马文有 ; 刘敏
  • 英文作者:CHANG Yu;ZHAO Guo-rui;YAN Xing-chen;MA Wen-you;LIU Min;School of Materials and Energy, Guangdong University of Technology;National Engineering Laboratory of Modern Surface Engineering Technology, Guangdong Provincial Key Laboratory of Modern Surface Engineering Technology, Guangdong Institute of New Materials;
  • 关键词:微弧氧化 ; 选区激光熔化成形 ; Ti6Al4V ; 生物涂层 ; 显微结构 ; 羟基磷灰石
  • 英文关键词:micro-arc oxidation(MAO);;selective laser melting(SLM);;Ti6Al4V;;bio ceramic coating;;microstructure;;hydroxyapatite
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:广东工业大学材料与能源学院;广东省新材料研究所广东省现代表面工程技术重点实验室现代材料表面工程技术国家工程实验室;
  • 出版日期:2019-02-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:广东省科学院实施创新驱动发展能力建设专项资金项目(2017GDASCX-0202,2017GDASCX-0111,2018GDASCX-0402,2018GDASCX-0946);; 广州市科技计划项目(201604016109,201704030111,201510010095,201807010030);; 广东省省级科技计划项目(2015B090920003,2016B090916003,2017A070702016,2017B030314122,2016A030312015,2017A070701027)~~
  • 语种:中文;
  • 页:BMJS201902016
  • 页数:9
  • CN:02
  • ISSN:50-1083/TG
  • 分类号:110-118
摘要
目的提升选区激光熔化成形(SLM)Ti6Al4V合金的生物活性。方法研究了不同电压对微弧氧化技术(MAO)在SLMTi6Al4V表面制备含钙磷生物陶瓷涂层的影响。通过扫描电子显微镜(SEM)、能量分散X射线光谱(EDS)和X射线衍射仪(XRD)等分析和研究了不同电压下微弧氧化涂层的显微结构、组织和成分等性能,并通过接触角测量和模拟体液浸泡实验及后续的红外光谱分析(FT-IR)等检验涂层的生物活性。结果经过微弧氧化处理,SLM Ti6Al4V表面含一定比例的钙磷且与基体结合良好的涂层,涂层的主要物相为锐钛矿,涂层厚度、钙/磷含量以及锐钛矿组织含量均随电压的升高而增加。300 V电压制备的膜层,表面均匀,钙、磷的原子数分数分别为7.04%、9.65%。涂层截面质量均一,厚度适宜,为3.19μm,且随着涂层增厚,基体元素Ti含量下降,Ca、P和O元素的含量增加。300V电压制备的膜层润湿性相比SLM Ti6Al4V基体的更好,膜层在SBF溶液中浸泡35天后,钙、磷比由0.73增加到1.2,并有羟基磷灰石生成。结论 SLM Ti6Al4V通过微弧氧化技术制备生物活性膜层的最优电压为300 V,经过微弧氧化后的钛合金表面生物活性得到提升。
        The work aims to improve the bioactivity of the selective laser melting(SLM) produced Ti6Al4V alloy. The ef-fect of different voltages on the preparation of calcium-phosphate bio-ceramic coatings on the SLM Ti6Al4V surface by mi-cro-arc oxidation(MAO) technology was studied. The microstructure, morphology, and chemical compositions of MAO coat-ings prepared under different voltages were analyzed and studied by scanning electron microscopy(SEM), energy dispersiveX-ray spectrum(EDS) and X-ray diffraction(XRD). The biological activity of coatings was inspected by contact angle meas-urement, simulated fluid immersion experiment and subsequent FT-IR. A coating with a certain proportion of calcium andphosphorus was formed on the surface of SLM Ti6Al4V and well combined with the matrix after MAO treatment. The mainphase of coating was anatase. Thickness of the coatings, the content of calcium and phosphorus and the content of anatase in-creased as the voltage increased. The coating produced by 300 V voltage had uniform surface and appropriate contents of Ca andP, which were 7.04% and 9.65%, respectively. The cross-section was uniform and the thickness was suitable, which was 3.19μm. With the thickening of the coating, the content of matrix element Ti decreased and the content of Ca, P and O increased. Thecalcium phosphate ratio of the coating produced by 300 V was increased from 0.73 to 1.2 after soaked in SBF solution for 35 days, so the wettability of coating was better than that of SLM Ti6Al4V substrate and hydroxyapatite was generated. The opti-mum voltage to prepare the biological active coating on SLM Ti6Al4V by MAO is 300 V and the biological activity of Ti alloyis improved by MAO.
引文
[1]THIJS L,VERHAEGHE F,CRAEGHS T,et al.A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J].Acta materialia,2010,58(9):3303-3312.
    [2]YAN X,YIN S,CHEN C,et al.Effect of heat treatment on the phase transformation and mechanical properties of Ti-6Al-4V fabricated by selective laser melting[J].Journal of alloys and compounds,2018,764(10):56-71.
    [3]BOSCHET A,BOTTINI L.Manufacturability of nonassembly joints fabricated in AlSi10Mg by selective laser melting[J].Journal of manufacturing processes,2019,37:425-437
    [4]VANDENBROUCKE B,KRUTH J P.Selective laser melting of biocompatible metals for rapid manufacturing of medical parts[J].Rapid prototyping journal,2007,13(4):196-203.
    [5]FAZEL M,SALIMIJAZI H R,GOLOZAR M A,et al.Acomparison of corrosion,tribocorrosion and electrochemical impedance properties of pure Ti and Ti-6Al-4Valloy treated by micro-arc oxidation process[J].Applied surface science,2015,324(75):1-6.
    [6]PATTANAYAK D K,FUKUDA A,MATSUSHITA T,et al.Bioactive Ti metal analogous to human cancellous bone:Fabrication by selective laser melting and chemical treatments[J].Acta biomater,2011,7(3):1398-1406.
    [7]LI S J,XU Q S,WANG Z,et al.Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method[J].Acta biomater,2014,10(10):4537-4547.
    [8]YAVARI S A,WAUTHLE R,VAN DER STOK J,et al.Fatigue behavior of porous biomaterials manufactured using selective laser melting[J].Materials science&engineering C,materials for biological applications,2013,33(8):4849-4858.
    [9]?ERBAN V A,RO?U R A,BUCUR A I,et al.Deposition of titanium nitride layers by electric arc-reactive plasma spraying method[J].Applied surface science,2013,265:245-249.
    [10]HUNG K Y,LO S C,SHIH C S,et al.Titanium surface modified by hydroxyapatite coating for dental implants[J].Surface and coatings technology,2013,231(9):337-345.
    [11]SUNARSO,TOITA R,TSURU K,et al.Immobilization of calcium and phosphate ions improves the osteoconductivity of titanium implants[J].Materials science and engineering:C,2016,68:291-298.
    [12]KIM W G,AHN K H,JEONG Y H,et al.Surface characteristics and cell proliferation of mechanical sandblasted Ti-30Ta-x Nb surface[J].Procedia engineering,2011,10(7):2399-2404.
    [13]WANG H,SHI Y,CAI N.Characteristics of liquid stannum anode fuel cell operated in battery mode and CO/H2/carbon fuel mode[J].Journal of power sources,2014,246(3):204-212.
    [14]VILARDELL A M,CINCA N,GARCIA-GIRALT N,et al.In-vitro study of hierarchical structures:Anodic oxidation and alkaline treatments onto highly rough titanium cold gas spray coatings for biomedical applications[J].Materials science and engineering:C,2018,91:589-596.
    [15]LEI Z,ZHANG H,ZHANG E,et al.Antibacterial activities and biocompatibilities of Ti-Ag alloys prepared by spark plasma sintering and acid etching[J].Materials science and engineering:C,2018,92:121-131.
    [16]WANG Y M,GUO J W,ZHUANG J P,et al.Development and characterization of MAO bioactive ceramic coating grown on micro-patterned Ti-6Al-4V alloy surface[J].Applied surface science,2014,299(8):58-65.
    [17]GU X N,LI N,ZHOU W R,et al.Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy[J].Acta biomaterialia,2011,7(4):1880-1889.
    [18]PAN Y K,CHEN C Z,WANG D G,et al.Improvement of corrosion and biological properties of microarc oxidized coatings on Mg-Zn-Zr alloy by optimizing negative power density parameters[J].Colloids and surfaces B:Biointerfaces,2014,113:421-428.
    [19]CHRZANOWSKI W,SZEWCZENKO J,TYRLIKHELDJ,et al.Influence of the anodic oxidation on the physicochemical properties of the Ti6Al4V ELI alloy[J].Journal of materials processing technology,2005,162-163:163-168.
    [20]KHANNA R,KOKUBO T,MATSUSHITA T,et al.Novel artificial hip joint:A layer of alumina on Ti-6Al-4V alloy formed by micro-arc oxidation[J].Materials science&engineering C,materials for biological applications,2015,55:393-400.
    [21]WANG Y,YU H,CHEN C,et al.Review of the biocompatibility of micro-arc oxidation coated titanium alloys[J].Materials&design,2015,85:640-652.
    [22]XIU P,JIA Z,LV J,et al.Tailored surface treatment of 3Dprinted porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocked bone/implant interface[J].ACSapplied materials&interfaces,2016,8(28):17964-17975.
    [23]LI F,LI J,KOU H,et al.Porous Ti6Al4V alloys with enhanced normalized fatigue strength for biomedical applications[J].Materials science&engineering C,2016,60:485-488.
    [24]YAN X,CHEN C,HUANG C,et al.Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting[J].Journal of alloys and compounds,2018,764:1056-1071.
    [25]YIN S,YAN X,CHEN C,et al.Hybrid additive manufacturing of Al-Ti6Al4V functionally graded materials with selective laser melting and cold spraying[J].Journal of materials processing technology,2018,255:650-655.
    [26]CHENG Y L,WU X Q,XUE Z G,et al.Microstructure,corrosion and wear performance of plasma electrolytic oxidation coatings formed on Ti-6Al-4V alloy in silicatehexametaphosphate electrolyte[J].Surface and coatings technology,2013,217(8):129-139.
    [27]WAUTHLE R,VRANCKEN B,BEYNAERTS B,et al.Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures[J].Additive manufacturing,2015,5:77-84.
    [28]AHMADI S M,ASHOK KUMAR JAIN R K,ZADP-OOR A A,et al.Effects of heat treatment on microstructure and mechanical behaviour of additive manufactured porous Ti6Al4V[J].IOP Conference series:Materials science and engineering,2018,293(1):012009.
    [29]赵永庆.钛合金相变及热处理[M].湖南:中南大学出版社,2012.ZHAO Yong-qing.Titanium alloy phase transformation and heat treatment[M].Hunan:Central South University Press,2012.
    [30]JAZI M R G,GOLOZAR M A,RAEISSI K,et al.Evaluation of corrosion and tribocorrosion of plasma electrolytic oxidation treated Ti-6Al-4V alloy[J].Surface and coatings technology,2014,244(15):29-36.
    [31]MONTAZERI M,DEHGHANIAN C,SHOKOUHFARM,et al.Investigation of the voltage and time effects on the formation of hydroxyapatite-containing titania prepared by plasma electrolytic oxidation on Ti-6Al-4V alloy and its corrosion behavior[J].Applied surface science,2011,257(16):7268-7275.
    [32]HENGEL I A J V,RIOOL M,FRATILA-APACHITEI LE,et al.Data on the surface morphology of additively manufactured Ti-6Al-4V implants during processing by plasma electrolytic oxidation[J].Data in brief,2017,13:385-389.
    [33]SHOKOUHFAR M,ALLAHKARAM S R.Formation mechanism and surface characterization of ceramic composite coatings on pure titanium prepared by micro-arc oxidation in electrolytes containing nanoparticles[J].Surface and coatings technology,2016,291:396-405.
    [34]WHEELER J M,COLLIER C A,PAILLARD J M,et al.Evaluation of micromechanical behaviour of plasma electrolytic oxidation(PEO)coatings on Ti-6Al-4V[J].Surface and coatings technology,2010,204(21-22):3399-3409.
    [35]何以侃,董慧茹.分析化学手册[M].北京:化学工业出版社,2016.HE Yi-kan,DONG Hui-ru.Handbook of analytical chmuistry[M].Beijing:Chemical Industry Press,2016.
    [36]MüLLER L,MüLLER F A.Preparation of SBF with different HCO3?content and its influence on the composition of biomimetic apatites[J].Acta biomaterialia,2006,2(2):181-189.
    [37]ZHANG T,ZHOU W,JIA Z,et al.Polydopamine-assisted functionalization of heparin and vancomycin onto microarc-oxidized 3D printed porous Ti-6Al-4V for improved hemocompatibility,osteogenic and anti-infection potencies[J].Science China materials,2018,61(4):579-592.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700