碳热还原-化合反应制备超细TiCN粉末工艺与特性表征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Characterization of Submicron Ti(C,N) Powders Produced by Carbonthermal Reduction-combination Reaction
  • 作者:柯荣现 ; 张立 ; 朱骥飞 ; 陈宜 ; 徐涛 ; 张忠健 ; 刘向中
  • 英文作者:Ke Rongxian;Zhang Li;Zhu Jifei;Chen Yi;Xu Tao;Zhang Zhongjian;Liu Xiangzhong;State Key Laboratory of Powder Metallurgy, Central South University;State Key Laboratory of Cemented Carbide;
  • 关键词:碳热还原-化合反应 ; Ti(C1-x ; Nx)粉末 ; 制备工艺 ; 粉末特性表征
  • 英文关键词:carbonthermal reduction-combination reaction;;Ti(C1-x,Nx) powder;;preparation technology;;powder properties characterization
  • 中文刊名:YZHJ
  • 英文刊名:Cemented Carbide
  • 机构:中南大学粉末冶金国家重点实验室;硬质合金国家重点实验室;
  • 出版日期:2015-04-15
  • 出版单位:硬质合金
  • 年:2015
  • 期:v.32;No.136
  • 基金:硬质合金国家重点实验室开放基金项目(201403002);; 湖南省战略性新兴产业科技攻关类项目(2014GK1028)
  • 语种:中文;
  • 页:YZHJ201502001
  • 页数:8
  • CN:02
  • ISSN:43-1107/TF
  • 分类号:4-11
摘要
以TiO2和制粒碳为原料,采用搅拌球磨-碳氮化工艺,在N2气氛中,通过碳热原位还原-化合反应,制备Ti(C1-x,Nx)粉末。研究了3种反应温度(1 600、1 700℃和1 800℃)和4组原料粉末摩尔比(n(C)/n(Ti)=2.3、2.4、2.5和2.6)对Ti(C1-x,Nx)粉末的物相、化学成分和粒度的影响。结果表明,在实验条件下制备的粉末均为单一物相成分;随反应温度升高和n(C)/n(Ti)增大,Ti(C1-x,Nx)粉末的x值随之降低;1 600℃条件下,当n(C)/n(Ti)为2.4时,合成的Ti(C1-x,Nx)粉末近似化学式为Ti(C0.41,N0.59),O和Cf含量均为0.25%,平均粒径约为0.7μm;1 700℃条件下,当n(C)/n(Ti)为2.6时,合成的Ti(C1-x,Nx)粉末近似化学式分别为Ti(C0.59,N0.41),O和Cf含量分别为0.13%和0.31%,平均粒径约为0.8μm。在此工艺条件下,制备的粉末各项综合性能指标相对较好。
        Ti(C1-x,Nx) powders were synthesized through in situ carbonthermal reduction-combination reaction in nitrogen atmosphere. Ti O2 and pelletization carbon were used as raw materials. Attritor-milling was employed to mix and activate the powder mixtures. The effects of reaction temperatures(1 600, 1 700, 1 800 ℃) and C/Ti O2 molar ratios(n(C)/n(Ti)=2.3, 2.4,2.5, 2.6) on the phase and chemical compositions, and particle sizes of Ti(C1-x,Nx) powders were investigated. The results show that all the powders synthesized under the experiment conditions are characterized with single phase. The x values in Ti(C1-x,Nx)powders decrease with the increase of reaction temperatures and n(C)/n(Ti) ratios. When the n(C)/n(Ti) ratio is 2.4, the approximate chemical formula of Ti(C1-x,Nx) powder synthesized at 1 600 ℃ is Ti(C0.41,N0.59). The mass fractions of oxygen and free carbon are all 0.25%. The particle size is 0.7 μm. When the n(C)/n(Ti) ratios is 2.6, the approximate chemical formula of Ti(C1-x,Nx) powder synthesized at 1 700 ℃ is Ti(C0.59,N0.41). The mass fractions of oxygen and free carbon are 0.13% and0.31%, respectively. The particle size is 0.8 μm. Under these technical conditions, Ti(C1-x,Nx) powders with good comprehensive properties can be synthesized.
引文
[1]Rahimi Dizaji V,Rahmani M,Faghihi Sani M,et al.Microstructure and cutting performance investigation of Ti(C,N)-based cermets containing various types of secondary carbides[J].International Journal of Machine Tools and Manufacture,2007,47(5):768-772.
    [2]Liu N,Chao S,Yang H.Cutting performances,mechanical property and microstructure of ultra-fine grade Ti(C,N)-based cermets[J].International Journal of Refractory Metals and Hard Materials,2006,24(6):445-452.
    [3]Kwon W T,Park J S,Kang S.Effect of group IV elements on the cutting characteristics of Ti(C,N)cermet tools and reliability analysis[J].Journal of Materials Processing Technology,2005,166(1):9-14.
    [4]瞿俊,熊惟皓,姚振华,等.WC粒径对Ti(C,N)基金属陶瓷组织和性能的影响[J].硬质合金,2010,27(6):321-325.Qu Jun,Xiong Weihao,Yao Zhenhua,et al.Effect of WC particle size on microstructure and mechanical of Ti(C,N)-based cermet[J].Cemented Carbide,2010,27(6):321-325.
    [5]南晴,张立,解明伟,等.用固溶体和单组元为原料制备的Ti(C,N)基金属陶瓷的组织与性能[J].粉末冶金材料科学与工程,2013,18(3):320-325.Nan Qing,Zhang Li,Xie Mingwei,et al.Microstructures and mechanical properties of Ti(C,N)-based cermets using solid solution type and interstitial phase type raw materials[J].Materials Science and Engineering of Powder Metallurgy,2013,18(3):320-325.
    [6]南晴,张立,冯于平,等.钛的碳氮化物固溶与单组元对Ti(C,N)基金属陶瓷电化学腐蚀性能的影响[J].硬质合金,2013,30(3):147-153.Nan Qing,Zhang Li,Feng Yuping,et al.Effects of carbonitride solid solution and interstitial phase on electrochemical corrosion resistance of Ti(C,N)-based cermets[J].Cemented Carbide,2013,30(3):147-153.
    [7]Zhang L,Feng Y P,Nan Q,et al.Effects of titanium-based raw materials on electrochemical behavior of Ti(C,N)-based cermets[J].International Journal of Refractory Metals and Hard Materials,2015,48(1):11-18.
    [8]Rezan S A,Zhang G,Ostrovski O,et al.Carbothermal reduction and nitridation of titanium dioxide in a H2-N2gas mixture[J].Journal of the American Ceramic Society,2011,94(11):3804-3811.
    [9]Yu H,Ye J,Dai Y,et al.Synthesis of(Ti,W,Mo,V)(C,N)powders by carbothermal reduction-nitridation with NH4HCO3addition[J].International Journal of Refractory Metals and Hard Materials,2014,44(1):84-87.
    [10]Yuan Q,Zheng Y,Yu H.Synthesis of nanocrystalline Ti(C,N)powders by mechanical alloying and influence of alloying elements on the reaction[J].International Journal of Refractory Metals and Hard Materials,2009,27(1):121-125.
    [11]C arole D,Frety N,Paris S,et al.Microstructural study of titanium carbonitride produced by combustion synthesis[J].Ceramics International,2007,33(8):1525-1534.
    [12]陈森凤,卢迪芬,刘富德,等.Ti(C0.12N0.88)粉末的高温合成[J].中国陶瓷,2000,36(5):4-5.Chen Senfeng,Lu Difen,Liu Fude,et al.Synthesizing of Ti(C0.12N0.88)powder of at high temperature[J].China Ceramics,2000,36(5):4-5.
    [13]Feng X,Shi L Y.Novel chemical metathesis route to prepare Ti CN nanocrystallites at low temperature[J].Materials Chemistry and Physics,2005,94(1):58-61.
    [14]Xiang D,Liu Y,Gao S,et al.Evolution of phase and microstructure during carbothermal reduction-nitridation synthesis of Ti(C,N)[J].Materials Characterization,2008,59(3):241-244.
    [15]Berger Lm,Gruner W.Investigation of the effect of a nitrogen-containing atmosphere on the carbothermal reduction of titanium dioxide[J].International Journal of Refractory Metals and Hard Materials,2002,20(3):235-251.
    [16]Jha A,Yoon S.Formation of titanium carbonitride phases via the reduction of Ti O2with carbon in the presence of nitrogen[J].Journal of materials science,1999,34(2):307-322.
    [17]Jung Ij,Kang S.A study of the characteristics of Ti(C,N)solid solutions[J].Journal of Materials Science,2000,35(1):87-90.
    [18]Jung Ij,Kang S,Jhi Sh,et al.A study of the formation of Ti(C,N)solid solutions[J].Acta materialia,1999,47(11):3241-3245.
    [19]Zhang S.Titanium carbonitride-based cermets:processes and properties[J].Materials Science and Engineering:A,1993,163(1):141-148.
    [20]He X,Ye Jw,Liu Y,et al.Phase transition and microstructure evolution during the carbothermal preparation of Ti(C,N)powders in an open system[J].Advanced Powder Technology,2010,21(4):448-451.
    [21]Rezan Sa,Zhang G,Ostrovski O.Effect of gas atmosphere on carbothermal reduction and nitridation of titanium dioxide[J].Metallurgical and Materials Transactions B,2011,43(1):73-81.
    [22]陈帮桥,叶金文,刘颖,等.碳热还原反应制备碳氮化钛粉末[J].硬质合金,2009,26(2):98-105.Chen Bangqiao,Ye Jinwen,Liu Ying,et al.Preparation of titanium carbonitride powder by carbothermal reduction method[J].Cemented Carbide,2009,26(2):98-105.
    [23]方民宪,陈厚生.碳热还原法制取Ti(C,N)的热力学原理[J].粉末冶金材料科学与工程,2006,11(6):229-336.Fang Minxian,Chen Housheng.Thermodynamic principle of preparing Ti(C,N)by carbon-heat reducing[J].Materials Science and Engineering of Powder Metallurgy,2006,11(6):229-336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700