金红石TiO_2纳米团簇与铀酰相互作用的相对论密度泛函理论计算
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Relativistic DFT Calculations of Interaction between Rutile TiO_2 Nanoparticle Clusters and Uranyl Species
  • 作者:郑明 ; 张红星 ; 袁福龙 ; 潘清江
  • 英文作者:ZHENG Ming;ZHANG Hong-Xing;YUAN Fu-Long;PAN Qing-Jiang;Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry,School of Chemistry and Materials Science, Heilongjiang University;Institute of Theoretical Chemistry, Jilin University;
  • 关键词:金红石TiO2纳米团簇 ; 铀污染物 ; 吸附作用本质 ; 电子结构 ; 相对论密度泛函理论
  • 英文关键词:rutile TiO2 nanoparticle clusters;;uranium contaminant;;adsorption interaction nature;;electronic structures;;relativistic DFT
  • 中文刊名:WJHX
  • 英文刊名:Chinese Journal of Inorganic Chemistry
  • 机构:黑龙江大学功能无机材料化学教育部重点实验室化学化工与材料学院;吉林大学理论化学研究所;
  • 出版日期:2018-05-02 18:13
  • 出版单位:无机化学学报
  • 年:2018
  • 期:v.34
  • 基金:国家自然科学基金(No.21671060,21273063)资助项目
  • 语种:中文;
  • 页:WJHX201805008
  • 页数:9
  • CN:05
  • ISSN:32-1185/O6
  • 分类号:77-85
摘要
采用全电子相对论密度泛函理论方法探索金红石型Ti O_2纳米团簇与铀酰的相互作用。考察金红石团簇模型(包括层数和表面积大小)变化对吸附铀形成复合物结构、吸附作用能等性质的影响,确定2层、表面积为1.1 nm×0.6 nm、包括63个原子的纳米团簇(标记为2L-Ti15)能够合理描述金红石纳米粒子性质的同时,还能节约计算资源。对2L-Ti15-[(UO_2)(H_2O)_3]~(2+)复合物计算表明,纳米团簇和铀酰存在共价键作用;优化得到U-O_(surf)键长0.233~0.238 nm,这一距离在已发现铀酰基配合物U-O距离范围内。在气相条件下,纳米团簇对铀酰吸附反应为放热过程(-3.02 e V);考虑溶剂介质环境的影响,反应则需要吸收少许能量(0.16e V)。U-O_(surf)键的能量分解发现,纳米团簇和铀酰的化学键作用为轨道相互作用主导的(占94%),它的静电吸引略大于Pauli排斥。基于电子密度的QTAIM(quantum theory of atoms in molecule)分析揭示,U-O_(surf)作用是介于离子和共价之间的配位键,其强度高于复合物中的U-OH_2键作用,但比U=O键弱。波函数分析表明,来自纳米团簇的O(2p)贡献HOMO轨道,并混有σ(U=O)成键性质,而LUMO轨道则为Ti(3d)修饰的U(5f)性质,复合物HOMO-LUMO带隙为2.40 e V,相对吸附前的纳米团簇半导体粒子的3.35 e V变窄。从吸收光谱角度而言,复合物体系可能在可见光区域具有更强的捕光性能。
        The interaction between rutile Ti O_2nanoparticle clusters(NPCs)and aquouranyl species have been examined using a relativistic functional theory(DFT).Effects of NPCs with various layers(1~4)and different surface areas on structural parameters of uranium adsorption complexes as well as adsorption interaction energies were investigated.It is found that the two-layered(2L)NPC(labeled as 2L-Ti15)with a surface area of 1.1 nm×0.6 nm and containing 63 atoms can reasonably stand for experimentally real Ti O_2nanocrystallite.Moreover,the model is able to save computational resources.Calculations reveal a covalent bonding interaction in the 2L-Ti15-[(UO_2)(H_2O)_3]~(2+)complex.The direct evidences include that the bond lengths of U-O_(surf)were optimized to be 0.233~0.238 nm,which fall well within the range of U-O distances of reported uranyl complexes.The process that the NPC adsorbs aquouranyl species is exothermic in the gas phase,releasing energy of-3.02 e V;the consideration of environment media of solution results in a slightly uphill process,requiring 0.16 e V energy.The energetic decomposition indicates that U-O_(surf)bonds are dominated by orbital interactions,accounting for 94%;other factors show a little effect,although electrostatic attraction is a little larger than Pauli repulsion.Electron density-based QTAIM(quantum theory of atoms in molecule)analyses unravel that the U-O_(surf)interaction is a dative bond per se,whose strength is stronger than that of U-OH_2,but much weaker than that of U=O_(yl).Inspection of wavefunction demonstrates that HOMO is contributed by O(2p)of NPC Ti O_2mixed with a small amount ofσ(U=O)bonding character,while LUMO is U(5f)-based character modified by Ti(3d).The HOMO-LUMO gap was calculated to be2.40 e V,which much narrower than the one of NPC semiconductor(3.35 e V).From a point of view of absorption spectra,the complex system would present a visible light-harvesting capability.
引文
[1]Hashke J M,Stakebake J L.The Chemistry of the Actinide and Transactinide Elements.Dordrecht:Springer,2006:3199-3272
    [2]Chen Z,Zhuang Z Y,Cao Q,et al.ACS Appl.Mater.Interfaces,2014,6(2):1301-1305
    [3]GU Jia-Fang(辜家芳),XU Ke(许可),CHEN Wen-Kai(陈文凯).Chinese J.Inorg.Chem.(无机化学学报),2017,33(9):1579-1586
    [4]Natrajan L S,Swinburne A N,Andrews M B,et al.Coord.Chem.Rev.,2014,266:171-193
    [5]Sandhu S S,Kohli K B,Brar A S.Inorg.Chem.,1984,23(22):3609-3612
    [6]Nieweg J A,Lemma K,Trewyn B G,et al.Inorg.Chem.,2005,44(16):5641-5648
    [7]Krishna V,Kamble V S,Gupta N M,et al.J.Phys.Chem.C,2008,112(40):15832-15843
    [8]Vandenborre J,Drot R,Simoni E.Inorg.Chem.,2007,46(4):1291-1296
    [9]Zhao S,Zhong Y,Guo Y,et al.Acta Chim.Sinica,2016,74(8):683-688
    [10]GU Jia-Fang(辜家芳),MAN Mei-Ling(满梅玲),LU ChunHai(陆春海),et al.Chinese.J.Inorg.Chem.(无机化学学报),2012,28(7):1324-1332
    [11]Perron H,Domain C,Roques J,et al.Inorg.Chem.,2006,45(17):6568-6570
    [12]Pan Q J,Odoh S O,Schreckenbach G,et al.Dalton Trans.,2012,41(29):8878-8885
    [13]Zhao H B,Zheng M,Schreckenbach G,et al.Inorg.Chem.,2017,56(5):2763-2776
    [14]Dossot M,Cremel S,Vandenborre J,et al.Langmuir,2006,22(1):140-147
    [15]Laikov D N.Chem.Phys.Lett.,1997,281(1/2/3):151-156
    [16]Fonseca Guerra C,Snijders J G,te Velde G,et al.Theor.Chem.Acc.,1998,99(6):391-403
    [17]Bader R F W.J.Phys.Chem.A,1998,102:7314-7323
    [18]Pye C C,Ziegler T.Theor.Chem.Acc.,1999,101(6):396-408
    [19]van Lenthe E,Baerends E J,Snijders J G.J.Chem.Phys.,1993,99(6):4597-4610
    [20]Frisch M J,Trucks G W,Schlegel H B,et al.Gaussian09,Gaussian,Inc.,Wallingford CT,2009.
    [21]Lu T,Chen F.J.Comput.Chem.,2012,33(5):580-592
    [22]Pan Q J,Schreckenbach G.Inorg.Chem.,2010,49(14):6509-6517
    [23]Arnold P L,Jones G M,Odoh S O,et al.Nat.Chem.,2012,4(3):221-227
    [24]Den Auwer C,Drot R,Simoni E,et al.New J.Chem.,2003,27(3):648-655
    [25]Sebbari K,Roques J,Simoni E,et al.Surf.Sci.,2012,606(15/16):1135-1141

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700