籽晶尺寸对宝石级金刚石单晶生长的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of seed crystal size on growth of gem-diamond single crystal
  • 作者:秦玉琨 ; 肖宏宇 ; 刘利娜 ; 孙瑞瑞 ; 胡秋波 ; 鲍志刚 ; 张永胜 ; 李尚升 ; 贾晓鹏
  • 英文作者:Qin Yu-Kun;Xiao Hong-Yu;Liu Li-Na;Sun Rui-Rui;Hu Qiu-Bo;Bao Zhi-Gang;Zhang Yong-Sheng;Li Shang-Sheng;Jia Xiao-Peng;Department of Mathematics and Physics,Luoyang Institute of Science and Technology;School of Materials Science and Engineering,Henan Polytechnic University;State Key Laboratory of Superhard Materials,Jilin University;
  • 关键词:高温高压 ; Ib型金刚石 ; 籽晶 ; 极限生长速度
  • 英文关键词:high temperature and high pressure;;type Ib diamond;;seed crystal;;limit growth rate
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:洛阳理工学院数理部;河南理工大学材料科学与工程学院;吉林大学超硬材料国家重点实验室;
  • 出版日期:2019-01-04 14:40
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金青年科学基金(批准号:51801092);; 河南省科技攻关项目(批准号:162102210275,172102210398,172102210404);; 河南省教育厅项目(批准号:16A140012,16A140044);; 河南省高等学校骨干教师资助计划(批准号:2015GGJS-112);; 河南省高等学校重点科研项目(批准号:18A430017,19A140005)资助的课题~~
  • 语种:中文;
  • 页:WLXB201902005
  • 页数:8
  • CN:02
  • ISSN:11-1958/O4
  • 分类号:49-56
摘要
本文在国产六面顶压机上,在5.6 GPa, 1250—1450℃的高压高温条件下,分别选用边长0.8, 1.5和2.2 mm三种尺寸的籽晶,系统开展了Ib型宝石级金刚石单晶的生长研究.文中系统考察了籽晶尺寸对宝石级金刚石单晶生长的影响.首先,考察了籽晶尺寸变化对宝石级金刚石单晶裂晶问题带来的影响.研究得到了籽晶尺寸变大,裂晶出现概率增加的晶体生长规律.其次,在25 h的生长时间内,考察了上述三种尺寸籽晶生长金刚石单晶时,生长时间与单晶极限生长速度的关系.得到了选用大尺寸籽晶,可以提高优质单晶合成效率、降低合成成本的研究结论.借助扫描电子显微镜和光学显微镜,对三种尺寸籽晶生长金刚石单晶的表面形貌进行了标定.最后,傅里叶微区红外测试,对三种尺寸籽晶生长宝石级金刚石单晶的N杂质含量进行了表征.研究得到了选用大尺寸籽晶实现快速生长金刚石的同时,晶体的N杂质含量会随之升高的晶体生长规律.
        In the paper, under 5.6 GPa and 1250-1450 ℃, the Ib-ype diamond single crystals chosen as the seed crystals with different sizes, are synthesized in a cubic anvil at high pressure and high temperature. High-purity Fe-Ni-Co solvents are chosen as the catalysts. High-purity graphite powder(99.99%, purity) is selected as the carbon source. Hexahedral abrasive grade high-quality diamonds of 0.8 mm, 1.5 mm or 2.2 mm in diameter are chosen as seed crystals. The effects of seed crystal size on the growth of gem-diamond single crystal are studied in detail. Firstly, the influence of the change of seed size on the cracking of diamond single crystal is investigated. The crystal growth law of increasing the probability of cracking crystal with larger seed crystal is obtained. It can be attributed to the following two points. i) The residual cross section at the separation of the main crystal from the larger seed crystal is too large, thus reducing the overall compressive strength of the crystal. ii) The growth rate of the diamond crystal synthesized by larger seed crystal is too fast, which leads to the increase of impurities and defects and the decrease of compressive strength of the crystal. The decrease of crystal compressive strength leads to cracks in diamond crystals during cooling and depressurizing. Secondly, in the growth time of 25 hours, the relationships between the growth time and the limit growth rate of the diamond single crystals synthesized by choosing three sizes of seed crystals are investigated. The results show that the high-quality single crystal synthesis efficiency can be improved and the synthesis period can be shortened by selecting large seed crystals. This is because the size of the seed crystal becomes larger at each stage of crystal growth, resulting in the enhancement of the ability of diamond single crystal to receive carbon,so that high-quality diamond single crystals can be grown at a faster growth rate. Thirdly, with the help of scanning electron microscope or optical microscope, we calibrate the surface morphologies of diamond single crystals grown with different-size seed crystals. Using the seed crystals of 0.8 mm, 1.5 mm or 2.2 mm in diameter, high-quality diamond single crystals with smooth surfaces can be synthesized. However, with the increase of seed crystal in size, the surface flatness of the grown crystals tends to decrease and the possibility with which surface defects occur and string inclusions increase. The growth rate of high-quality diamond single crystals grown with larger seed crystals must be strictly controlled. Finally, the N impurity content values of diamond single crystals grown with different seed crystals in size are characterized by Fourier transform infrared measurement. The results show that the N impurity content of the crystal increases with the diamond growing rapidly by selecting larger seed crystal.
引文
[1] Bundy F P, Hall H T, Strong H M, Wentorf Jr R H 1955Nature 176 51
    [2] Bovenkerk H P, Bundy F P, Hall H T, Strong H M, Wentorf Jr R H 1959 Nature 184 1094
    [3] Strong H M 1963 J. Phys. Chem. 39 2057
    [4] Traore A, Muret P, Fiori A, Eon D, Gheeraert E, Pernot J2014 Appl. Phys. Lett. 104 052105
    [5] Sumiya H, Toda N, Satoh S 2002 J. Cryst. Growth 237-2391281
    [6] Kanda H 2001 Radiat. Eff. Defects Solids 156 163
    [7] Ren Z Y, Zhang J F, Zhang J C, Xu S D, Zhang C F, Quan R D, Hao Y 2017 Acta Phys. Sin. 66 208101(in Chinese)[任泽阳,张金风,张进成,许晟瑞,张春福,全汝岱,郝跃2017物理学报66 208101]
    [8] Liu Y J, He D W, Wang P, Tang M J, Xu C, Wang W D,Liu J, Liu G D, Kou Z L 2017 Acta Phys. Sin. 66 038103(in Chinese)[刘银娟,贺端威,王培,唐明君,许超,王文丹,刘进,刘国端,寇自立2017物理学报66 038103]
    [9] Liu G Q, Pan X Y 2018 Chin. Phys. B 27 020304
    [10] Wu K P, Ma W F, Sun C X, Chen C Z, Ling L Y, Wang Z G2018 Chin. Phys. B 27 058101
    [11] Berman L E,Hastings J B, Siddons D P,Koike M,Stojanoffand V, Hart M 1993 Nucl. Instrum. Methods 329 555
    [12] Freund A K 1995 Opt. Eng. 34 432
    [13] Koizumi S, Watanabe K,Hasegawa M, Kanda H 2001Science 292 1899
    [14] Makino T,Tanimoto S,Hayashi Y, Kato H, Tokuda N,Ogura M,Takeuchi D,Oyama K,Ohashi H, Okushi H,Yamasaki S 2009 Appl. Phys. Lett. 94 262101
    [15] Xiao J W, Yang H Z, Wu X Z, Younus F, Li P, Wen B,Zhang X Y, Wang Y B, Tian Y J 2018 Sci. Adv. 4 8195
    [16] Sun S S, Xu Z Z, Cui W, Jia X P, Ma H A 2017 Chin. Phys.B 26 098101
    [17] Wang J K,Li S S,Jiang Q W,Song Y L,Yu K P,Han F,Su T C, Hu M H, Hu Q, Ma H A, Jia X P, Xiao H Y 2018 Chin.Phys. B 27 088102
    [18] Srimongkon K, Ohmagari S, Katoa Y, Amornkitbamrung V,Shikata S I 2016 Diam. Relat. Mater. 63 21
    [19] Palyanov Y N, Borzdov Y M, Kupriyanov I N, Bataleva Y V,Khohkhryakov A F 2015 Diam. Relat. Mater. 58 40
    [20] Li Y, Jia X P, Feng Y G, Fang C, Fan L J, Li Y D, Zeng X,Ma H A 2015 Chin. Phys. B 24 088104
    [21] Zhang H, Li S S, Su T C, Hu M H, Li G H, Man H A, Jia X P 2016 Chin. Phys. B 25 118104
    [22] Xiao H Y, Jia X P, Ma H A, Li S S, Li Y, Zhao M 2010Chinese Sci. Bull. 55 1372
    [23] Xiao H Y, Qin Y K, Liu L N, Bao Z G, Tang C J, Sun R R,Zhang Y S, Li S S, Jia X P 2018 Acta Phys. Sin. 67 140702(in Chinese)[肖宏宇,秦玉琨,刘利娜,鲍志刚,唐春娟,孙瑞瑞,张永胜,李尚升,贾晓鹏2018物理学报67 140702]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700