基于反转路径差信号的兰姆波成像方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Lamb wave imaging method based on difference signal in reverse path
  • 作者:焦敬品 ; 李海平 ; 何存富 ; 吴斌 ; 薛岩
  • 英文作者:Jiao Jing-Pin;Li Hai-Ping;He Cun-Fu;Wu Bin;Xue Yan;College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology;PetroChina Natural Gas Pipeline Science Research Institute Corporation Limited;
  • 关键词:兰姆波 ; 板结构 ; 反转路径差信号 ; 稀疏阵列
  • 英文关键词:Lamb waves;;plate structure;;difference signal in reverse paths;;sparse array
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:北京工业大学机械工程与应用电子技术学院;中国石油天然气管道科学研究院有限公司;
  • 出版日期:2019-06-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家重点研发计划(批准号:2016YFC0802102);; 国家自然科学基金(批准号:11572010)资助的课题~~
  • 语种:中文;
  • 页:WLXB201912014
  • 页数:13
  • CN:12
  • ISSN:11-1958/O4
  • 分类号:129-141
摘要
针对传统基线相减成像方法受环境温度影响的问题,考虑到反转路径下超声波在缺陷处散射场的差异性,提出了一种基于反转路径差信号的兰姆波稀疏阵列成像方法.通过数值仿真,对反转路径差信号的来源进行了分析,并研究了缺陷与两个传感器的夹角及路径差对反转路径差信号幅值的影响规律.在此基础上,通过数值仿真及检测实验,研究了基于反转路径差信号的兰姆波成像方法对板中缺陷检测的有效性.结果表明,基于反转路径差信号的兰姆波成像方法可以很好地消除直达波对缺陷成像的影响,实现板中不同位置的圆孔和矩形缺陷成像,且成像分辨率较高,定位较准确.本文为板结构大范围健康监测提供了一种可行的新方案.
        The traditional Lamb wave structure health monitoring imaging method based on reference signal is affected by environmental factors such as temperature change. To solve this problem, considering the difference in the scattered fields generated by the interaction between ultrasonic waves and defects in the reverse path, a Lamb wave imaging method is proposed in this paper based on the difference signal of sparse array in inverse path. Numerical simulations are carried out to determine the generation conditions of difference signal in inversion path, and the influences of the angles and distances between the defect and the two sensors on the amplitude of difference signal in inversion path. It is found that the difference signal in reverse path is much more obvious when the defect appears as asymmetric distribution towards the excitation sensor and receiving sensors; the amplitude of difference signal in inverse path is affected by distance difference of the Lamb wave propagating in reverse path and the scattering coefficient of the defect. On this basis, the effectiveness of the Lamb wave imaging method based on the difference signal in inverse path is studied numerically and experimentally. The results show that the Lamb wave imaging method based on the difference signal in inversion path can perfectly eliminate the interference between direct wave and the boundary reflection wave,and the imaging method can detect the defect at different positions in the plate. Moreover, the imaging resolution is higher and the defect location is accurate. The research work provides a new feasible scheme for the extensive health monitoring of plate structure.
引文
[1] Abbas M, Shafiee M 2018 Sensors 18 3958
    [2] Gao G J, Deng M X, Li M L, Liu C 2015 Acta Phys. Sin. 64224301(in Chinese)[高广健,邓明晰,李明亮,刘畅2015物理学报64 224301]
    [3] Kudela P, Radzienski M, Ostachowicz W, Yang Z 2018 Mech.Syst. Signal Proc. 108 21
    [4] Chen S J, Zhou S P, Li Y, Xiang Y X, Qi M X 2017 Chin.Phys. Lett. 34 044301
    [5] Petrone G 2018 Aerosp. Sci. Technol. 82 304
    [6] Munian R K, Mahapatra D R, Gopalakrishnan S 2018Compos. Struct. 206 484
    [7] Mohammadi M, Pouyan A A, Khan N A, Abolghasemi V2018 Signal Process. 150 85
    [8] Kim C Y, Park K J 2015 NDT&E Int. 74 15
    [9] Wilcox P D, Lowe M, Cawley P 2003 IEEE Trans. Ultrason.Ferroelectr. 50 419
    [10] Xu K, Ta D, Moilanen P, Wang W Q 2012 J. Acoust. Soc.Am. 131 2714
    [11] Agrahari J K, Kapuria S 2018 Struct. Control HLTH. 25e2064
    [12] Salmanpour M S,Sharif K Z,Mhf A 2017 Sensors 17 1178
    [13] Muller A, Robertson-Welsh B, Gaydecki P, Gresil M, Soutis C 2017 Appl. Compos. Mater. 24 553
    [14] Zhao X L, Gao H D, Zhang G F, Ayhan B, Yan F, Kwan C,Rose J L 2007 Smart Mater. Struct. 16 1208
    [15] Chen F, Wilcox P D 2007 Ultrasonics 47 111
    [16] Douglass A C S, Harley J B 2018 IEEE Trans. Ultrason.Ferroelectr. 65 851
    [17] Lu Y, Michaels J E 2009 IEEE Sens. J. 9 1462
    [18] Sohn H 2007 Philos. Trans. R. Soc. A:-Math. Phys. 365 539
    [19] Clarke T, Cawley P, Wilcox P, Croxford A 2009 IEEE Trans.Ultrason. Ferroelectr. Freq. Control 56 2666
    [20] Konstantinidis G, Wilcox P D, Drinkwater B W 2007 IEEE Sens. J. 7 905
    [21] Park H W, Sohn H, Law K H, Farrar C R 2007 J. Sound Vibr. 302 50
    [22] Jan H, Morteza T, Steven D, van Koen D A 2016 Material 9901
    [23] Tabatabaeipour M, Hettler J, Delrue S, van Den Abeele K2016 NDT&E Int. 80 23
    [24] Ciampa F, Pickering S G, Scarselli G, Meo M 2017 Struct.Control HLTH. 24 e1911
    [25] Demetgul M, Senyurek V Y, Uyandik R, Tansel I N,Yazicioglu O 2015 Measurement 69 42
    [26] Nguyen L T, Kocur G K, Saenger E H 2018 Ultrasonics 90153
    [27] Hongye L, Xin C, Michaels J E, Michaels T E, Cunfu H 2019Ultrasonics 91 220
    [28] Zhang J, Drinkwater B W, Wilcox P D 2008 IEEE Trans.Ultrason. Ferroelectr. Freq. Control. 55 2254
    [29] Zheng Y, He C F, Zhou J J, Zhang Y C 2013 Eng. Mech. 30236(in Chinese)[郑阳,何存富,周进节,张也弛2013工程力学30 236]
    [30] Harley J B, Moura J M 2013 J. Acoust. Soc. Am. 133 2732
    [31] Harley J B, Jose M F 2014 J. Acoust. Soc. Am. 135 1231
    [32] Soleimanpour R, Ng C T 2016 J. Civil Struct. Health Monit. 6447

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700