A numerical study on flame and large-scale flow structures in bluff-body stabilized flames
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A numerical study on flame and large-scale flow structures in bluff-body stabilized flames
  • 作者:Jing ; CHEN ; Hua ; ZHOU ; Zhuyin ; REN
  • 英文作者:Jing CHEN;Hua ZHOU;Zhuyin REN;Center for Combustion Energy,Tsinghua University;School of Aerospace Engineering,Tsinghua University;
  • 英文关键词:Bluff-body stabilized flames;;Large Eddy Simulation(LES);;Large-scale flow structures;;Proper Orthogonal Decomposition(POD)
  • 中文刊名:HKXS
  • 英文刊名:中国航空学报(英文版)
  • 机构:Center for Combustion Energy,Tsinghua University;School of Aerospace Engineering,Tsinghua University;
  • 出版日期:2019-07-15
  • 出版单位:Chinese Journal of Aeronautics
  • 年:2019
  • 期:v.32;No.160
  • 基金:supported by the National Natural Science Foundation of China(Nos.91441202 and 51476087)
  • 语种:英文;
  • 页:HKXS201907007
  • 页数:11
  • CN:07
  • ISSN:11-1732/V
  • 分类号:86-96
摘要
Large Eddy Simulations(LES) in conjunction with the Flamelet Progress Variable(FPV) approach have been performed to investigate the flame and large-scale flow structures in the bluff-body stabilized non-premixed flames, HM1 and HM3. The validity of the numerical methods is first verified by comparing the predicted velocity and composition fields with experimental measurements. Then the evolution of the flame and large-scale flow structures is analyzed when the flames approach blow-off. The analysis of instantaneous and statistical data indicates that there exists a shift of the control mechanism in the recirculation zone in the two flames. In the recirculation zone, HM1 flame is mainly controlled by the mixing effect and ignition mainly occurs in the outer shear layer. In HM3 flame, both the chemical reactions and mixing are important in the recirculation zone. The Proper Orthogonal Decomposition(POD) results show that the fluctuations in the outer shear layer are more intense in HM1, while the flow structures are more obvious in the outer vortex structure in HM3, due to the different control mechanism in the recirculation zone.It further shows that the flow structures in HM1 spread larger in the intense mixing zone due to higher temperature and less extinction.
        Large Eddy Simulations(LES) in conjunction with the Flamelet Progress Variable(FPV) approach have been performed to investigate the flame and large-scale flow structures in the bluff-body stabilized non-premixed flames, HM1 and HM3. The validity of the numerical methods is first verified by comparing the predicted velocity and composition fields with experimental measurements. Then the evolution of the flame and large-scale flow structures is analyzed when the flames approach blow-off. The analysis of instantaneous and statistical data indicates that there exists a shift of the control mechanism in the recirculation zone in the two flames. In the recirculation zone, HM1 flame is mainly controlled by the mixing effect and ignition mainly occurs in the outer shear layer. In HM3 flame, both the chemical reactions and mixing are important in the recirculation zone. The Proper Orthogonal Decomposition(POD) results show that the fluctuations in the outer shear layer are more intense in HM1, while the flow structures are more obvious in the outer vortex structure in HM3, due to the different control mechanism in the recirculation zone.It further shows that the flow structures in HM1 spread larger in the intense mixing zone due to higher temperature and less extinction.
引文
1.The′venin D,Renard PH,Rolon JC,Candel S.Extinction processes during a non-premixed flame-vortex interaction.Symp(Int)Combust 1998;27(1):719-26.
    2.Riley JJ,Metcalfe RW,Orszag SA.Direct numerical simulations of chemically reacting turbulent mixing layers.Phys Fluids 1986;29(2):406-22.
    3.Renard PH,Rolon JC,The′venin D,Candel S.Investigations of heat release,extinction,and time evolution of the flame surface,for a nonpremixed flame interacting with a vortex.Combust Flame1999;117(1-2):189-205.
    4.Clavin P,Williams F.Effects of molecular diffusion and of thermal expansion on the structure and dynamics of premixed flames in turbulent flows of large scale and low intensity.J Fluid Mech 1982;116:251-82.
    5.Kadowaki S,Hasegawa T.Numerical simulation of dynamics of premixed flames:flame instability and vortex-flame interaction.Prog Energy Combust Sci 2005;31(3):193-241.
    6.Fureby C,Lo¨fstro¨m C.Large-eddy simulations of bluff body stabilized flames.Symp(Int)Combust 1994;25(1):1257-64.
    7.Soteriou MC,Ghoniem AF.The vorticity dynamics of an exothermic,spatially developing,forced,reacting shear layer.Symp(Int)Combust 1994;25(1):1265-72.
    8.Aspden AJ,Bell JB,Day MS,Egolfopoulos FN.Turbulenceflame interactions in lean premixed dodecane flames.Proc Combust Inst 2017;36(2):2005-16.
    9.Elbaz AM,Roberts WL.Conical quarl swirl stabilized nonpremixed flames:flame and flow field interaction.Energy Procedia2017;120:206-13.
    10.Thiesset F,Halter F,Bariki C,Lapeyre C,Chauveau C,Go¨kalp I,et al.Experimental assessment of the displacement and consumption speeds in flame/vortex interactions.In:26th International Colloquium on the Dynamics of Explosions and Reactive Systems;2017 Jul 30-Aug 4;Boston MA.2017.p.1-6.
    11.Thiesset F,Maurice G,Halter F,Mazellier N,Chauveau C,Go¨kalp I.Flame-vortex interaction:effect of residence time and formulation of a new efficiency function.Proc Combust Inst2017;36(2):1843-51.
    12.Thiesset F,Halter F,Bariki C,et al.Isolating strain and curvature effects in premixed flame/vortex interactions.J Fluid Mech2017;831:618-54.
    13.Shanbhogue SJ,Husain S,Lieuwen T.Lean blowoff of bluff body stabilized flames:scaling and dynamics.Prog Energy Combust Sci2009;35(1):98-120.
    14.Thevenin D,Renard PH,Fiechtner GJ,Gord JR,Rolon JC.Regimes of non-premixed flame-vortex interactions.Proc Combust Inst 2000;28(2):2101-8.
    15.Venugopal R,Abraham J.A 2-D DNS investigation of extinction and reignition dynamics in nonpremixed flame-vortex interactions.Combust Flame 2008;153(3):442-64.
    16.Kim M,Choi Y,Oh J,Yoon Y.Flame-vortex interaction and mixing behaviors of turbulent non-premixed jet flames under acoustic forcing.Combust Flame 2009;156(12):2252-63.
    17.Dawson JR,Gordon RL,Kariuki J,Mastorakos E,Masri AR,Juddoo M.Visualization of blow-off events in bluff-body stabilized turbulent premixed flames.Proc Combust Inst 2011;33(1):1559-66.
    18.Tuttle SG,Chaudhuri S,Kopp-Vaughan KM,et al.Lean blowoff behavior of asymmetrically-fueled bluff body-stabilized flames.Combust Flame 2013;160(9):1677-92.
    19.Roy S,Yi T,Jiang N,Gunaratne GH,Chterev I,Emerson B,et al.Dynamics of robust structures in turbulent swirling reacting flows.J Fluid Mech 2017;816:554-85.
    20.Sirovich L.Turbulence and the dynamics of coherent structures.I.Coherent structures.Q Appl Math 1987;45(3):561-71.
    21.Hodzic E,Alenius E,Duwig C,Szasz RS,Fuchs L.A large eddy simulation study of bluff body flame dynamics approaching blowoff.Combust Sci Technol 2017;189(7):1107-37.
    22.Zhang HD,Han C,Ye TH,Zhang JM,Chen YL.Large eddy simulation of unconfined turbulent swirling flow.Sci China Technol Sci 2015;58:1731-44.
    23.Blanchard R,Wickersham AJ,Ma L,Ng W,Vandsburger U.Simulating bluff-body flameholders:on the use of proper orthogonal decomposition for combustion dynamics validation.J Eng Gas Turbines Power 2014;136(12):121504-13.
    24.Dally BB,Masri AR,Barlow RS,Fiechtner GJ.Instantaneous and mean compositional structure of bluff-body stabilized nonpremixed flames.Combust Flame 1998;114(1-2):119-48.
    25.TNF Workshop website[Internet].Albuquerque:Sandia National Laboratories;c2006[cited 2018 Oct].Available from:http://www.ca.sandia.gov/TNF/.
    26.Gkagkas K,Lindstedt RP,Kuan TS.Transported PDF modelling of a high velocity bluff-body stabilised flame(HM2)using detailed chemistry.Flow Turbul Combust 2009;82(4):493-509.
    27.Zhao W,Zhang C,Chen C.Large eddy simulation of bluff-body stabilized flames using a multi-environment filtered density function model.Proc Combust Inst 2011;33(1):1347-53.
    28.Kim SH,Huh KY.Use of the conditional moment closure model to predict NO formation in a turbulent CH4/H2 flame over a bluff-body.Combust Flame 2002;130(1-2):94-111.
    29.Kempf A,Lindstedt R,Janicka J.Large-eddy simulation of a bluff-body stabilized nonpremixed flame.Combust Flame 2006;144(1-2):170-89.
    30.Kim SH,Pitsch H.Mixing characteristics and structure of a turbulent jet diffusion flame stabilized on a bluff-body.Phys Fluids2006;18(7):0751031-751113.
    31.Germano M,Piomelli U,Moin P,Cabot WH.A dynamic subgridscale eddy viscosity model.Phys Fluids A 1991;3(7):1760-5.
    32.De S,Kim SH.Large eddy simulation of dilute reacting sprays:droplet evaporation and scalar mixing.Combust Flame 2013;160(10):2048-66.
    33.Kemenov KA,Wang H,Pope SB.Modelling effects of subgridscale mixture fraction variance in LES of a piloted diffusion flame.Combust Theory Modell 2012;16:611-38.
    34.Peters N.Turbulent combustion.1st ed.Cambridge:Cambridge University Press;2000.p.1-5.
    35.Kamal MM,Duwig C,Balusamy S,Zhou RG,Hochgreb S.Proper orthogonal decomposition analysis of non-swirling turbulent stratified and premixed methane/air flames.ASME Turbo Expo 2014:Turbine Technical Conference and Exposition;2014June 16-20;Du¨sseldorf Germany.2014(45691):V04BTA023.
    36.Dally BB,Fletcher DF,Masri AR.Flow and mixing fields of turbulent bluff-body jets and flames.Combust Theory Modell1998;2(2):193-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700