热化学还原法制备金属钛的技术研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mini-review on the preparation of titanium metal by the thermochemical processes
  • 作者:朱小芳 ; 李庆 ; 张盈 ; 房志刚 ; 郑诗礼 ; 孙沛 ; 夏阳
  • 英文作者:Xiaofang ZHU;Qing LI;Ying ZHANG;Zhigang Zak FANG;Shili ZHENG;Pei SUN;Yang XIA;Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences;School of Chemical Engineering, University of Chinese Academy of Sciences;Department of Metallurgical Engineering, University of Utah;
  • 关键词:金属钛 ; 四氯化钛 ; 二氧化钛 ; 氟钛酸盐 ; 热化学还原
  • 英文关键词:titanium metal;;TiCl4;;TiO2;;fluorotitanate;;thermochemical reduction
  • 中文刊名:HGYJ
  • 英文刊名:The Chinese Journal of Process Engineering
  • 机构:中国科学院过程工程研究所绿色过程与工程重点实验室;中国科学院大学化学工程学院;犹他大学冶金工程系;
  • 出版日期:2018-12-22 20:50
  • 出版单位:过程工程学报
  • 年:2019
  • 期:v.19
  • 基金:国家自然科学基金资助项目(编号:51771179)
  • 语种:中文;
  • 页:HGYJ201903003
  • 页数:9
  • CN:03
  • ISSN:11-4541/TQ
  • 分类号:17-25
摘要
金属钛及其合金性能优异,是重要的功能与结构材料。元素钛虽储量丰富,但极易与其它金属及氧氮氢碳等间隙元素反应,特别是与氧化学结合力强,使金属钛的提取非常困难。目前金属钛的主流生产方法是Kroll法,虽经多年优化且已高度成熟,但生产成本及能耗较高。为降低金属钛的生产成本,提出了诸多热化学与电化学新方法。本工作综述了近十余种不同热化学还原法,包括以TiCl4为前驱体的Kroll法、Hunter法、ADMA法、TiRO法、气相还原法、CSIR-Ti法、ITP-Armstrong法及ARC法和以TiO2为前驱体的预成型还原法(PRP)、熔盐辅助的液钙还原法、导电体介入还原法(EMR)、镁热还原-金属钙脱氧两步法及氢气协同镁热还原(HAMR)法,还有以钛酸盐为原料的氟钛酸盐热还原法。常用的还原剂主要是活泼金属单质及其合金,包括钙、镁、铝、钠。论述了这些方法的技术特点及研究现状。这些工艺大都处于实验室或中试研究阶段,其工业化潜力也不尽相同,最终在产品质量和经济成本上能否比Kroll法更具优越性尚需验证。
        Titanium metal and its alloys are popular structural and functional materials due to their excellent properties. Even though titanium element is abundant in the earth, its extraction is very difficult because of its strong chemical affinity to other metals and interstitial elements including O, N, H, C, especially oxygen. The plasticity of titanium metal is sensitive to even trace oxygen content. It has been well acknowledged that it is extremely challenging to produce titanium metal with low enough oxygen. The currently commercialized method to produce Ti metal is the Kroll process, which has been optimized for years and highly matured, but it is costly and energy-intensive. In order to reduce the product cost of titanium metal and thus widen its applications, many new methods have been proposed in recent decades, which can be categorized into two main groups, thermochemical methods and electrochemical methods. This article made a mini-review of the developed thermochemical methods from the aspects of technical features and research status, including the Kroll process, the Hunter process, the ADMA process, the TiRO process, the gas reduction process, the CSIR-Ti process, the ITP-Armstrong process, and the ARC process which using TiCl_4 as the precursor, the preform reduction process(PRP), molten salt facilitated Ca reduction process, electronically mediated reaction(EMR) process, Mg reduction-Ca deoxygenation two-step process, and the hydrogen assisted magnesiothermic reduction(HAMR) process which using TiO_2 as the precursor, and thermochemical reduction of fluorotitanate. The common reductants are reactive metals and their alloys, including Ca, Mg, Al, and Na. These processes are still at the laboratory or pilot-plant stage, and it is recognized that the potential of industrialization of these methods is different, thus an uncertain time is needed to verify if these methods have advantages over the Kroll process on quality and production cost.
引文
[1]Lütjering G,Williams J C.Titanium[M].Berlin:Springer,2007:4-8.
    [2]Lu K.The future of metals[J].Science,2010,328(5976):319-320.
    [3]Reed T B.Free energy of formation of binary compounds:an atlas of charts for high-temperature chemical calculations[M].Cambridge:The MIT Press,1971:193-197.
    [4]Kroll W.The production of ductile titanium[J].Transactions Electrochemical Society,1940,78(35):35-47.
    [5]Hunter M A.Metallic titanium[J].Journal of the American Chemical Society,1910,32(3):330-336.
    [6]Mo W.Titanium metallurgy[M].Beijing:Metallurgical Industry Press,1998:50-55.
    [7]Seetharaman S.Treatise on process metallurgy[M].Newnes:Elsevier,2013:1024-1027.
    [8]Kasparov S A,Klevtsov A G,Cheprasov A I,et al.Semi-continuous magnesium-hydrogen reduction process for manufacturing of hydrogenated,purified titanium powder:US 8007562 B2[P].2011-08-30.
    [9]Doblin C,Chryss A,Monch A.Titanium powder from the TiROTMprocess[J].Key Engineering Materials,2012,520:95-100.
    [10]Hansen D A,Gerdemann S J.Producing titanium powder by continuous vapor-phase reduction[J].The Journal of the Minerals,Metals&Materials Society,1998,50(11):56-58.
    [11]Vuuren D V,Oosthuizen S J,Heydenrych M D.Titanium production via metallothermic reduction of TiCl4 in molten salt:problems and products[J].Journal of the Southern African Institute of Mining and Metallurgy,2011,111:141-148.
    [12]Crowley G.How to extract low-cost titanium:a new process for titanium extraction and production promises to cut costs and expand applications[J].Advanced Materials&Process,2003,161(11):25-27.
    [13]Chen W,Yamamoto Y,Peter W H.Investigation of pressing and sintering processes of CP-Ti powder made by armstrong process[J].Key Engineering Materials,2010,436:123-130.
    [14]Gerdemann S J,Oden L L,White J C.Continuous production of titanium powder[J].Titanium Extraction and Processing,Indianapolis,1997,50(9):49-54.
    [15]Bordbar H,Yousefi A A,Abedini H.Production of titanium tetrachloride(TiCl4)from titanium ores:a review[J].Polyolefins Journal,2017,4(2):149-173.
    [16]Coughlin J P.Contributions to the data on theoretical metallurgy:XII.heats and free energies of formation of inorganic oxides[M].Burbank:US Government Printing Office,1954:857-990.
    [17]Mah A D.Thermodynamic properties of titanium-oxygen solutions and compounds[J].Bureau of Mines,1957,53(16):33-37.
    [18]Okabe T H,Oda T,Mitsuda Y.Titanium powder production by preform reduction process(PRP)[J].Journal of Alloys&Compounds,2004,364(1):156-163.
    [19]万贺利.钙热还原TiO2法制备金属钛粉的实验研究[D].昆明:昆明理工大学,2012:20-25.Wan H L.Experimental study on preparation of titanium powder by calcium-thermal reduction of TiO2 method[D].Kunming:Kunming University of Science and Technology,2012:20-25.
    [20]Suzuki R O,Inoue S.Calciothermic reduction of titanium oxide in molten CaCl2[J].Metallurgical&Materials Transactions B,2003,34(3):277-285.
    [21]Park I,Abiko T,Okabe T H.Production of titanium powder directly from TiO2 in CaCl2 through an electronically mediated reaction(EMR)[J].Journal of Physics and Chemistry of Solids,2005,66(2):410-413.
    [22]Henrie T A,Henry D,Kleespies E K.Magnesium reduction of titanium oxides in a hydrogen atmosphere:US 3140170 A[P].1964-07-07.
    [23]Nersisyan H H,Lee J H,Won C W.Combustion of TiO2-Mg and TiO2-Mg-C systems in the presence of NaCl to synthesize nanocrystalline Ti and TiC powders[J].Materials Research Bulletin,2003,38(7):1135-1146.
    [24]Eshed M,Irzh A,Gedanken A.Reduction of titanium dioxide to metallic titanium conducted under the autogenic pressure of the reactants[J].Inorganic Chemistry,2009,48(15):7066-7069.
    [25]Won C W,Nersisyan H H,Won H I.Titanium powder prepared by a rapid exothermic reaction[J].Chemical Engineering Journal,2010,157(1):270-275.
    [26]Zhang Y,Fang Z Z,Xia Y,et al.A novel chemical pathway for energy efficient production of Ti metal from upgraded titanium slag[J].Chemical Engineering Journal,2016,286:517-527.
    [27]Fisher R L.Deoxidation of titanium and similar metals using a deoxidant in a molten metal carrier:US 4923531[P].1990-05-08.
    [28]Suzuki R O,Saguchi A,Takahashi W,et al.Recycling and high performance waste processing:recycling of rare earth magnet scraps:Part II.oxygen removal by calcium[J].Materials Transactions,JIM,2001,42(12):2492-2498.
    [29]Okabe T H,Oishi T,Ono K.Preparation and characterization of extra-low-oxygen titanium[J].Journal of Alloys&Compounds,1992,184(1):43-56.
    [30]Oh J M,Lee B K,Suh C Y,et al.Deoxidation of Ti powder and preparation of Ti ingot with low oxygen concentration[J].Materials Transactions,2012,53(6):1075-1077.
    [31]Xia Y,Fang Z Z,Sun P,et al.The effect of molten salt on oxygen removal from titanium and its alloys using calcium[J].Journal of Materials Science,2017,52(7):4120-4128.
    [32]Zhang Y,Fang Z Z,Sun P,et al.Thermodynamic destabilization of Ti-O solid solution by H2 and deoxygenation of Ti using Mg[J].Journal of the American Chemical Society,2016,138(22):6916-6919.
    [33]Xia Y,Fang Z Z,Zhang Y,et al.Hydrogen assisted magnesiothermic reduction(HAMR)of commercial TiO2 to produce titanium powder with controlled morphology and particle size[J].Materials Transactions,2017,58(3):355-360.
    [34]Zhang Y,Fang Z Z,Sun P,et al.Kinetically enhanced metallothermic redox of TiO2 by Mg in molten salt[J].Chemical Engineering Journal,2017,327:169-182.
    [35]Zhang Y,Fang Z Z,Xia Y,et al.Hydrogen assisted magnesiothermic reduction of TiO2[J].Chemical Engineering Journal,2017,308:299-310.
    [36]Jonas K.Cyclic process for the manufacture of titanium-aluminum alloys and regeneration of intermediates thereof:US 2837426[P].1958-06-03.
    [37]王武育.氟盐铝热还原法制取海绵钛的研究[J].稀有金属,1996,20(3):169-171.
    [38]冯乃祥,赵坤,王耀武,等.两段铝热还原制取钛或钛铝合金并副产无钛冰晶石的方法:WO 2017012185 A1[P].2017-01-26.
    [39]Zhao K,Feng N X,Wang Y W.Fabrication of Ti-Al intermetallics by a two-stage aluminothermic reduction process using Na2TiF6[J].Intermetallics,2017,85:156-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700