CO_2/水乳液体系的黏度测定
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Viscosity of CO_2/water emulsion
  • 作者:张建 ; 胡冬冬 ; 包磊 ; 赵玲 ; 刘涛
  • 英文作者:Zhang Jian;Hu Dongdong;Bao Lei;Zhao Ling;Liu Tao;Department of Chemical Engineering,Shanghai Key Laboratory of Multiphase Materials Chemical Engineering,East China University of Science and Technology;
  • 关键词:CO2/水乳液体系 ; 黏度 ; 表面活性剂 ; 聚乙二醇三甲基壬基醚
  • 英文关键词:carbon dioxide/water emulsion;;viscosity;;surfactant;;poly(ethylene glycol) 2,6,8-trimethyl-4-nonyl ether
  • 中文刊名:SYHG
  • 英文刊名:Petrochemical Technology
  • 机构:华东理工大学化工学院上海市多相结构材料化学工程重点实验室;
  • 出版日期:2017-08-15
  • 出版单位:石油化工
  • 年:2017
  • 期:v.46
  • 基金:国家自然科学基金项目(21376087)
  • 语种:中文;
  • 页:SYHG201708002
  • 页数:6
  • CN:08
  • ISSN:11-2361/TQ
  • 分类号:5-10
摘要
采用超临界CO_2、H_2O和表面活性剂聚乙二醇三甲基壬基醚(TMN-6)构建了水包CO_2的乳液体系,探索了CO_2/水乳液体系的形成条件,利用高压落球黏度计测试了CO_2/水乳液体系的黏度,考察了TMN-6质量浓度、体系温度、CO_2压力及m_(H_2O)∶m_(CO_2)对乳液体系黏度的影响。实验结果表明,在25~40℃,10~25 MPa,m_(CO_2)∶m_(H_2O)=(2∶8)~(5∶5),TMN-6质量浓度在0.2%~1.5%条件下,可形成稳定的CO_2/水乳液体系;乳液体系的黏度随TMN-6质量浓度的增加、CO_2压力的升高、温度的降低及m_(H_2O)∶m_(CO_2)的增加有不同程度的增大,且随着TMN-6质量浓度的增加,CO_2/水乳液体系黏度与温度和压力的相关性也逐渐增加。
        CO_2/water emulsion could be formed using supercritical CO_2,H_2O and surfactant poly(ethylene glycol) 2,6,8-trimethyl-4-nonyl ether(TMN-6). The formation conditions for CO_2/water emulsion were investigated. The viscosity of the CO_2/water emulsion was measured using the high pressure falling ball viscometer. The effects of the surfactant concentration,temperature,CO_2 pressure and m_(H_2O)∶m_(CO_2)on the emulsion viscosity were studied. The results showed that the viscosity of the emulsion was much higher than that of CO_2 or water. At 25-40 ℃,CO_2 pressure of 10-25 MPa,m_(H_2O)∶m_(CO_2) between(2∶8)-(5 ∶ 5),and TMN-6 concentration(w) of 0.2%-1.5%,the viscosity of CO_2/water emulsion increased with increasing the TMN-6 concentration,CO_2 pressure and m_(H_2O)∶ m_(CO_2),and decreasing the temperature. In addition,it was showed that the dependence of the CO_2/water emulsion viscosity on temperature and pressure were gradually enhanced with increasing surfactant concentration.
引文
[1]Godec M L,Kuuskraa V A,Dipietro P.Opportunities for using anthropogenic CO2 for enhanced oil recovery and CO2 storage[J].Energy Fuels,2013,27(8):4183-4189.
    [2]Klusman R W.A geochemical perspective and assessment of leakage potential for a mature carbon dioxideenhanced oil recovery project and as a prototype for carbon dioxide sequestration:Rangeley field,colorado[J].Aapg Bull,2003,87(9):1485-1507.
    [3]Sagir M,Tan I M,Mushtaq M,et al.Synthesis of a new CO2philicsurfactant for enhanced oil recovery applications[J].JDisper Sci Technol,2014,35(5):647-654.
    [4]Moritis G.CO2 injection gains momentum[J].Oil Gas J,2006,104(15):37-41.
    [5]Heidaryan E,Hatami T,Rahimi M,et al.Viscosity of pure carbon dioxide at supercritical region:Measurement and correlation approach[J].J Supercrit Fluids,2011,56(2):144-151.
    [6]Wang X,Alvarado V,Swoboda-Colberg N,et al.Reactivity of dolomite in water-saturated supercritical carbon dioxide:Significance for carbon capture and storage and for enhanced oil and gas recovery[J].Energy Convers Manage,2013,65(6):564-73.
    [7]陈欢庆,胡永乐,田昌炳.CO2驱油与埋存研究进展[J].油田化学,2012,29(1):116-121.
    [8]Xu J H,Wlaschin A,Enick R M.Thickening carbon dioxidewith the fluoroacrylate-styrene copolymer[J].SPE J,2003,8(2):81-97.
    [9]Tapriya D.Design of non-fluorous CO2-soluble compounds[D].Pittsburgh:University of Pittsburgh,2009.
    [10]沈爱国,刘金波,佘跃惠,等.CO2潜在增稠剂苯乙烯醋酸乙烯酯二元共聚物的设计与合成[J].石油天然气学报,2011,33(2):131-134.
    [11]沈爱国,刘金波,佘跃惠,等.CO2增稠剂聚醋酸乙烯酯甲基倍半硅氧烷的合成[J].高分子材料科学与工程,2011,27(11):157-159.
    [12]刘巍.超临界CO2增稠剂研究进展[J].断块油气田,2012,19(5):658-661.
    [13]Doherty M D,Lee J J,Dhuwe A,et al.Small molecule cyclic amide and urea based thickeners for organic and sc-CO2/organic solutions[J].Energy Fuels,2016,30(7):5601-5610.
    [14]Perry R,Doherty M D,Lee J J,et al.Anthraquinonoid siloxanes as thickening agents for supercritical CO2[J].Energy Fuels,2016,30(7):5990-5998.
    [15]Zhang Shiyang,She Yuehui,Gu Yongan.Evaluation of polymers as direct thickeners for CO2 enhanced oil recovery[J].JChem Eng Data,2011,56(4):1069-1079.
    [16]Liu Kun,Frank S,Kiran E.High-pressure viscosity and density of poly(methyl methacrylate)+acetone and poly(methyl methacrylate)+acetone+CO2 systems[J].J Supercrit Fluids,2006,39(1):89-101.
    [17]Yan Xiong,Kiran E.Miscibility,density and viscosity of polystyrene in n-hexane at high pressures[J].Polymer,1997,38(20):5185-5193.
    [18]Alotaibl F M,Zhou X M,Kokal S L.A novel technique for enhanced oil recovery:In-situ CO2-emulsion generation[J].Polymer,1999,40(14):3979-3988.
    [19]Lin Bo,Pu Wanfen,Zhao Jinzhou,et al.In-situ carbon dioxide generation technology applied to enhance oil recovery[J].Acta Petrolei Sinica,2007,28(2):98-101.
    [20]Sagisaka M,Fujii T,Koike D,et al.Surfactant mixing effects on the interfacial tension and the microemulsion formation in water/supercritical CO2 system[J].Langmuir,2007,23(5):2369-2375.
    [21]Wen Ten-chin,Wang Yeong-jyh,Cheng Tsung-tien,et al.The effect of DMPA units on ionic conductivity of PEG-DMPA-IPDI waterborne polyurethane as single-ion electrolytes[J].Polymer,1999,40(14):3979-3988.
    [22]Rocha S R,Psathas P A,Klein E,et al.Concentrated CO2-in-water emulsions with nonionic polymeric surfactants[J].JColloid Interface Sci,2001,239(1):241-253.
    [23]Dong Zhaoxia,Li Yi,Lin Meiqin,et al.A study of the mechanism of enhancing oil recovery using supercritical carbon dioxide microemulsions[J].Pet Sci,2013,10(1):91-96.
    [24]Yeo S D,Kiran E.High pressure viscosity and density of polystyrene solutions in methyl cyclohexane[J].J Supercrit Fluids,1999,15(3):261-272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700